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Abstract 

Parkinson's Disease (PD) is a progressive neurodegenerative disorder that significantly impacts both motor and non-
motor functions, including speech. Early and accurate recognition of PD through speech analysis can greatly enhance 
patient outcomes by enabling timely intervention. This paper provides a comprehensive review of methods for PD 
recognition using speech data, highlighting advances in machine learning and data-driven approaches. We discuss the 
process of data wrangling, including data collection, cleaning, transformation, and exploratory data analysis, to prepare 
the dataset for machine learning applications. Various classification algorithms are explored, including logistic 
regression, SVM, and neural networks, with and without feature selection. Each method is evaluated based on accuracy, 
precision, and training time. Our findings indicate that specific acoustic features and advanced machine-learning 
techniques can effectively differentiate between individuals with PD and healthy controls. The study concludes with a 
comparison of the different models, identifying the most effective approaches for PD recognition, and suggesting 
potential directions for future research.  
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1. Introduction

PD is a progressive neurodegenerative disorder characterized by motor symptoms such as tremors, rigidity, 
bradykinesia (slowness of movement), and postural instability. These symptoms result from the degeneration of 
dopamine-producing neurons in the substantia nigra region of the brain. While PD primarily affects movement, it can 
also lead to a range of non-motor symptoms, including speech and voice disorders. Speech impairment is a common 
non-motor symptom of PD, manifesting as changes in voice quality, pitch variability, articulation, and phonation. These 
alterations, often subtle in the early stages of the disease, can significantly impact an individual's quality of life and 
communication abilities. As a result, there is growing interest in leveraging speech analysis techniques for the early 
detection and monitoring of PD. Traditional methods for PD diagnosis rely on clinical assessment by movement disorder 
specialists, which may involve subjective evaluations of motor symptoms and neuropsychological testing. However, 
these methods can be time-consuming, expensive, and may not capture subtle changes in speech patterns indicative of 
early-stage PD. In recent years, advances in machine learning and data driven approaches have paved the way for the 
development of computational tools for PD recognition using speech data. These methods aim to extract quantitative 
features from speech recordings and utilize machine learning algorithms to discriminate between individuals with PD 
and healthy controls. 

The paper [1] contributes to Parkinson's disease detection by including the Parkinson's Telemonitoring dataset in its 
benchmarks for hyperparameter optimization (HPO). It evaluates various HPO methods like Bayesian optimization and 
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evolutionary algorithms on this dataset, providing insights into effective techniques for optimizing neural network 
architectures and hyperparameters. The paper [2] explores the impact of interaction effects between clustering and 
prediction algorithms, including their application in medical diagnoses such as Parkinson's disease recognition. It 
discusses the use of voice recordings to predict PD , where clustering corresponds to grouping voice recordings of the 
same individual, and prediction involves determining whether the patient has PD. The study finds that traditional cross-
validation techniques exhibit significant empirical bias when estimating out-of-cluster prediction loss, especially in 
cases where clustering errors exist. However, the methods proposed in the paper correct these biases, thus improving 
the accuracy of PD prediction on new, previously unseen individuals. The paper [3] contributes to Parkinson's disease 
recognition by exploring advanced machine-learning techniques. This paper introduces an online learning algorithm, 
PRIL, which utilizes interval labeled data to create accurate ranking classifiers, demonstrating its effectiveness on 
various datasets. This approach can be adapted to rank the severity or progression of PD symptoms, potentially 
enhancing diagnostic accuracy. Meanwhile, it examines the interplay between predictive modeling and clustering, which 
could be applied to refine clustering techniques for patient subgroups in PD, thereby improving personalized treatment 
strategies. The paper [4] contributes significantly to the field of PD recognition through various innovative 
methodologies. The authors address the challenge of PD by correcting bias introduced by cross-validation and clustering 
errors, demonstrating their method's effectiveness with voice recordings from PD patients. The paper utilizes 
biomedical voice measurements to predict the Unified PD Rating Scale (UPDRS) scores, showcasing a robust interval 
ranking classifier that accurately handles the biomedical voice data of PD patients. The paper [5] contributes 
significantly to PD recognition through its advanced machine-learning approaches. The authors present a novel 
stochastic gradient algorithm that operates on the Grassmann manifold, which is designed to exploit the geometric 
properties of subspaces. This method, known as Stochastic Gossip, is compared against other algorithms like Alt-Min 
and Trust-region on benchmark datasets, including a PD dataset. The dataset consists of symptom scores for 42 patients, 
predicted using 19 biomedical features. The results demonstrate that the proposed method achieves competitive 
performance in terms of normalized mean squared error (NMSE), indicating its efficacy in predicting PD symptom 
progression. The paper [6] enhances the classification accuracy of PD using the Discriminative Deep Forest method. 
This approach outperforms the gcForest across various configurations, particularly with higher numbers of decision 
trees and training examples, indicating its robustness in handling complex datasets like those involving PD. The paper 
[7] makes a significant contribution to PD recognition through its innovative optimization framework. This approach 
addresses the low-rank matrix learning problem, utilizing a saddle point formulation to improve generalization 
performance while maintaining computational efficiency. Specifically, the authors demonstrate the effectiveness of their 
method in predicting PD symptom scores by employing it on a dataset of biomedical features from patients. Their results 
show that the saddle point approach achieves superior prediction accuracy and robustness compared to traditional 
low-rank approximation techniques, thereby enhancing the reliability of symptom recognition and progression 
assessment in PD. The paper [8]'s contribution to PD's recognition is significant, as it introduces novel methodologies 
for early and accurate diagnosis of the disease. By leveraging advanced machine learning algorithms and comprehensive 
datasets, the research offers improved detection capabilities, which are crucial for timely intervention and treatment. 
The study also highlights the potential of integrating various biomarkers, such as voice analysis and motor function 
assessments, to enhance diagnostic precision. The paper [9] significantly contributes to the recognition of PD by 
improving the accuracy and interpretability of classification models used in medical diagnostics. It introduces novel 
methodologies and techniques for enhancing model performance, particularly in handling imbalanced datasets, which 
are common in medical data. By providing a robust framework for evaluating and interpreting classification models, the 
research aids in the early and precise identification of PD, facilitating better patient outcomes and advancing the field 
of medical data analysis. The paper [10] significantly contributes to the recognition of Parkinson's disease by enhancing 
multi-task learning methodologies. By jointly learning tasks and the output kernel, the paper provides a framework that 
efficiently handles the optimization problems inherent in medical data analysis. This approach is particularly beneficial 
for Parkinson's recognition as it leverages relationships between various related tasks, improving generalization and 
predictive accuracy. The innovative use of positive semidefinite kernels and the resulting computational efficiencies 
offer substantial improvements in the performance of machine learning models used for early and accurate diagnosis 
of Parkinson's disease, thereby aiding in better patient outcomes and advancing the field of medical diagnostics. The 
paper [11], primarily focuses on improving the performance of neural network ensembles by utilizing the Extreme 
Learning Machine (ELM) algorithm. The paper does not explicitly mention PD. Instead, it discusses the theoretical 
foundations and practical applications of ELM, including its benefits, such as extremely fast training speeds and good 
generalization performance, and introduces enhanced ensemble approaches to improve regression problems' 
outcomes. The paper [12] primarily focuses on improving the efficiency of Bayesian inference for Gaussian processes 
using a method called Adaptive Multiple Importance Sampling (AMIS). The paper does not specifically address the 
recognition of Parkinson's disease. Instead, it deals with statistical inference methods and their applications in various 
domains like pattern recognition, neuroimaging, and signal processing.  
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This paper is organized into three main sections. In Section 2, we focus on data wrangling, detailing the processes of 
data collection, cleaning, transformation, and exploratory data analysis. This ensures the dataset is properly prepared 
for machine learning applications. In Section 3, we explore various machine learning algorithms for classification. Each 
method is evaluated based on accuracy, precision, and training time, with and without feature selection. Finally, in 
Section 4, we conclude by summarizing our findings, comparing the performance of the different models, and discussing 
the most effective approaches for the classification task, along with potential directions for future research. 

2. Data Wrangling 

The dataset used in this study, obtained from the UCI Machine Learning Repository [13], comprises a collection of 
biomedical voice measurements from 195 individuals, including 48 diagnosed with PD and 147 healthy individuals. 
Each row in the dataset represents a voice recording, with columns corresponding to various voice measures and a 
binary target variable indicating the health status of the individual (1 for PD, 0 for healthy). The dataset consists of 23 
features, encompassing measures of vocal fundamental frequency, variation in fundamental frequency, variation in 
amplitude, ratio of noise to tonal components, nonlinear dynamical complexity measures, and nonlinear measures of 
fundamental frequency variation. Each feature serves a specific role in characterizing voice measurements: 

 Name: Categorical variable serving as an identifier for each observation. 
 MDVP:Fo, MDVP:Fhi, MDVP:Flo: Continuous features representing average, maximum, and minimum vocal 

fundamental frequency, respectively, measured in Hz . 
 MDVP:Jitter, MDVP:Jitter(Abs), MDVP:RAP, MDVP:PPQ, Jitter:DDP: Continuous features measuring variation in 

fundamental frequency, expressed as a percentage for MDVP:Jitter and in absolute units for MDVP:Jitter(Abs), 
MDVP:RAP, MDVP:PPQ, and Jitter:DDP. 

 MDVP:Shimmer, MDVP:Shimmer(dB), Shimmer:APQ3, Shimmer:APQ5, MDVP:APQ, Shimmer:DDA: Continuous 
features quantifying variation in amplitude and amplitude perturbations, with measurements in dB for 
MDVP:Shimmer(dB). 

 NHR, HNR: Continuous features representing the ratio of noise to tonal components and harmonicto-noise 
ratio, respectively. 

 Status: Binary target variable indicating the health status of the individual ( 0 for healthy, 1 for Parkinson's 
disease). 

 RPDE, DFA, spread1, spread2, D2, PPE: Continuous features capturing nonlinear dynamical complexity and 
fractal scaling properties. 

2.1. Summary Statistics 

The summary statistics for the dataset are presented in Table 1. The Summary of Statistics table provides essential 
insights into the dataset's features. It includes various statistical measures such as mean, standard deviation, minimum, 
maximum, and quartiles. The dataset comprises 195 samples for each feature, as indicated by the count values. The 
consistent count across all features suggests that the dataset is balanced in terms of sample size. Outliers and noise in 
the data can be identified by examining the minimum and maximum values, and comparing them with the interquartile 
range (IQR). MDVP:Fhi shows a wide range ( 102.145000 to 592.030000 ), which might include outliers. Features like 
Jitter:DDP and MDVP:Shimmer(dB) also display significant ranges relative to their IQRs, indicating potential outliers. 
The dataset presents a variety of features with differing levels of variability. Key features with higher variance, such as 
MDVP:Fhi, MDVP:Flo, and Spread1, are crucial for building robust models. Outliers and noise, particularly in features 
with extensive ranges, need to be addressed to ensure data quality. Understanding the distribution of these features 
aids in selecting and tuning the most appropriate machine-learning models for analysis. The dataset comprises a wide 
range of acoustic features that provide insights into the fundamental frequency, amplitude variations, noise 
components, and non-linear characteristics of the voice signal. These features are essential for voice analysis and can 
be used in various applications, including medical diagnostics and speech processing. 
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Table 1 Summary Statistics 

 MDVP:Fo MDVP:Fhi MDVP:Flo MDVP:Jitter(%) 
MDVP:Jitter(Abs

) 
MDVP:RAP MDVP:PPQ 

Jitter:DD
P 

count 195.000 195.000 195.000 195.000 195.000 195.000 195.000 195.000 

mean 154.228 197.104 116.324 0.006 0.00004 0.003 0.003306 0.009 

Std 41.390 91.491 43.524 0.003 0.000035 0.001 0.001885 0.005 

Min 88.333 102.145 65.476 0.001 0.000007 0.001 0.000680 0.002 

25% 117.572 134.862 84.291 0.003 0.000021 0.007 0.001691 0.004 

50% 148.790 175.882 104.351 0.005 0.000031 0.003 0.002978 0.008 

75% 182.769 224.205 140.018 0.008 0.000056 0.005 0.004557 0.013 

Max 260.105 592.030 239.170 0.033 0.000260 0.018 0.019580 0.053 

 MDVP:Shimmer(%
) 

MDVP:Shimmer(d
B) 

Shimmer:APQ
3 

Shimmer:APQ
5 

MDVP:APQ Shimmer:DD
A 

NHR HNR 

coun
t 

195.000 195.000 195.000 195.000 195.000 195.000 195.000 195.00
0 

mea
n 

0.030 0.282 0.016 0.017 0.021 0.048 0.02254
2 

21.885 

Std 0.019 0.173 0.010 0.013 0.012 0.032 0.01473
9 

4.425 

Min 0.009 0.085 0.004 0.005 0.007 0.014 0.00461
0 

9.393 

25% 0.017 0.155 0.008 0.008 0.011 0.024 0.01126
9 

19.737 

50% 0.026 0.224 0.012 0.014 0.017 0.038 0.01941
0 

22.068 

75% 0.037 0.367 0.029 0.024 0.026 0.060 0.03239
1 

24.850 

Max 0.119 1.005 0.062 0.064 0.078 0.187 0.12678
0 

33.047 

 

The heatmap in Figure 1 displays the pairwise correlation coefficients between various features and the target variable. 
Here are some key observations: 

 MDVP:Fhi and MDVP:Flo: A significant positive correlation (0.60) suggests that these features are closely 
related, possibly representing similar aspects of the data. 

 MDVP:Jitter and its variants (Jitter:DDP, RAP, PPQ): The correlations are extremely high (close to 1), indicating 
that these features capture very similar information. 

 MDVP:Shimmer and its variants (Shimmer:DDA, APQ3, APQ5, APQ): These features also show very high 
positive correlations, implying redundancy. 

 NHR and HNR: Negative correlation (-0.71), which indicates they may capture opposite effects in the data. 

 RPDE DFA spread1 spread2 D2 PPE 

count 195.000 195.000 195.000 195.000 195.000 195.000 

mean 0.542 0.718 -5.684 0.198 2.381 0.206 

Std 0.065 0.054 1.092 0.085 0.090 0.090 

Min 0.256 0.574 -7.964 -0.450 1.423 0.044 

25% 0.504 0.682 -6.355 0.142 2.099 0.137 

50% 0.543 0.718 -5.679 0.198 2.361 0.185 

75% 0.582 0.755 -4.950 0.252 2.636 0.252 

Max 0.685 0.825 -3.413 0.466 3.671 0.527 
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 DFA with several features: DFA shows moderate negative correlations with MDVP:Fhi (-0.34), MDVP:Flo ( -0.45 
), and RPDE ( -0.41 ) 

 RPDE and MDVP:Fhi: A strong negative correlation (-0.40) indicates that as one increases, the other tends to 
decrease. 

2.1.1.  Strongest Correlation with Target 

 PPE: The strongest positive correlation (0.48) with the target, suggesting it might be a key predictor. 
 Spread1 and Spread2: Both show significant positive correlations with the target ( 0.65 and 0.52 , respectively), 

indicating their importance in predicting the target variable. 
 RPDE: Positive correlation (0.47) with the target, showing it has a relevant but slightly lower impact compared 

to Spread1 and Spread2. 
 D2: Shows a moderate positive correlation (0.48) with the target. 
 DFA: Shows a moderate positive correlation (0.27) with the target. 
 Weak/Insignificant Correlations: Most of the other features have relatively weak correlations with the target, 

suggesting they might have less predictive power individually 

 

Figure 1 Heat-Map 

The heatmap reveals several important patterns in the feature correlations, helping identify key predictors and 
potential redundancies. Understanding these relationships is crucial for effective feature selection and improving the 
performance of predictive models. Given the high correlations among MDVP:Jitter variants and MDVP:Shimmer 
variants, it may be beneficial to perform feature selection or dimensionality reduction to avoid multicollinearity and 
improve model performance. Features such as PPE, Spread1, Spread2, and RPDE are strongly correlated with the target 
and should be considered key predictors in the model. Features with weak correlations to the target might not 
contribute significantly to the predictive power of the model and could potentially be excluded to simplify the model. 

3. Methodology 

3.1. Generalized Forest 

The Generalized Forest（  gcF ) algorithm is an ensemble learning method designed to improve the accuracy and 
robustness of predictive models by creating multiple decision trees and combining their predictions. The results of gfc 
for different values for the parameters n_estimators and max_depth are presented in Table 2. The evaluation of the gfc 
model with various configurations reveals consistent performance in terms of accuracy ( 0.9487 ) and precision 
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(0.9412) across all tested parameter values for n_estimators and max_depth. However, the training time shows 
significant variation, increasing with the number of estimators and tree depth. For example, training time ranges from 
0.0631 seconds for n_estimators=50 and max_depth=None to 0.3097 seconds for n_estimators=200 and max_depth=20. 
This suggests that while the model's classification capabilities remain stable, optimizing the balance between the 
number of estimators and tree depth is crucial for managing computational efficiency. 

Table 2 Evaluation of gfc with Different Parameters 

Model Accuracy Precision Training Time (s) 

gcF (n_estimators=50, max_depth=None) 0.9487 0.9412 0.0631 

gcF (n_estimators=50, max_depth=10) 0.9487 0.9412 0.0749 

gcF (n_estimators=50, max_depth=20) 0.9487 0.9412 0.0758 

gcF (n_estimators=100, max_depth=None) 0.9487 0.9412 0.1780 

gcF (n_estimators=100, max_depth=10) 0.9487 0.9412 0.1459 

gcF (n_estimators=100, max_depth=20) 0.9487 0.9412 0.1727 

gcF (n_estimators=200, max_depth=None) 0.9487 0.9412 0.2736 

gcF (n_estimators=200, max_depth=10) 0.9487 0.9412 0.2538 

gcF (n_estimators=200, max_depth=20) 0.9487 0.9412 0.3097 

 

3.2. Logistic Regression 

In this section, we apply the Logistic Regression method for classification. Two crucial parameters that need tuning in 
this method are 𝐶 and the solver. After standardizing the data features, we perform 

Table 3 Comparison of accuracy, precision, and training time for different solvers with 𝑪 = 𝟏𝟎𝟎 

Solver Accuracy Precision Training Time (s) 

newton-cg 0.9231 0.9143 0.0138 

lbfgs 0.9231 0.9143 0.0174 

saga 0.8974 0.9118 0.1739 

sag 0.9231 0.9143 0.1505 

Cross-validation using candidate values 𝐶 = [0.01,0.1,1,10,100] for each solver. In logistic regression, the 𝐶 parameter 
represents the inverse of the regularization strength, where smaller values correspond to stronger regularization. The 
optimal 𝐶 value is found to be 𝐶 = 100 for all solvers. The results for different solvers are presented in Table 3. As 
mentioned in section 2, the features of the data set have strong dependence. Thus, here we also do feature reduction 
using PCA method to see how this affects the performance of SVM. After applying PCA with 95% of variance, there are 
only 8 many features remaining. The results are presented in Table 4. The results in Table 4 indicate that after reducing 
the 

Table 4 Comparison of accuracy, precision, and training time for different solvers with 𝐂 = 𝟏𝟎 after PCA 

Solver Accuracy Precision Training Time (s) 

newton-cg 0.8974 0.8888 0.0029 

lbfgs 0.8974 0.8888 0.0029 

saga 0.8974 0.8888 0.0089 

sag 0.8974 0.8888 0.0045 
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Feature space with PCA, the model's performance regarding the quality of classification decreases. The reduction of the 
optimal C, shows that after using PCA we need a larger regularization parameter. This can be because after reducing the 
number of features, the correlation of them is larger. 

3.3. Support Vector Machines 

In this section, we apply Support Vector Machines (SVM). To capture the nature of the data set, we tune it with different 
kernel functions (linear, polynomial, radial basis function) and report the results. The regularization parameter 𝐶 
controls the balance between maximizing the margin and minimizing the classification error on the training data. 
Initially, we conducted cross-validation with various kernels. After determining the optimal 𝐶 value, we evaluated the 
performance of the SVM models with different kernels, as demonstrated in Table 5. These results indicate that the poly 
and rbf kernels perform best in terms of accuracy and precision. The linear kernel also shows good performance but is 
slightly lower than poly and rbf. The sigmoid kernel, on the other hand, shows the lowest performance in terms of 
accuracy but has relatively high precision. Training time is very low for all kernels. The overall performance suggests 
that the choice of kernel significantly impacts the model's accuracy and precision, with poly and rbf being the optimal 
choices for this dataset. After applying PCA, the performance of SVM kernels was slightly adjusted. The results are 
demonstrated in Table 6. These results indicate that even after reducing the feature space with PCA, the poly and rbf 
kernels maintain strong performance, 

Table 5 Performance metrics of SVM models with different kernels 

Kernel Accuracy Precision Training Time (s) 

linear 0.8974 0.8889 0.0148 

poly 0.9487 0.9412 0.0020 

rbf 0.9487 0.9412 0.0020 

sigmoid 0.7692 0.8485 0.0020 

 

Table 6 Comparison of accuracy, precision, and training time for different SVM kernels with 𝑪 = 𝟏𝟎 after PCA 

Kernel Accuracy Precision Training Time (s) 

linear 0.9231 0.9143 0.0020 

poly 0.8718 0.8857 0.0020 

rbf 0.9487 0.9412 0.0020 

Underscoring their robustness in capturing the dataset's underlying patterns. For this small data set reducing the 
number of features does not demonstrate a significant effect on the run time. However, it is a valuable observation, and 
in the future with data sets with more features, it can be considered as a method to reduce the run time while keeping 
the same quality for classifiers. 

3.4. Gradient Boosting Machines 

Gradient Boosting is part of the ensemble learning family. During iterations, the algorithm computes the residuals, 
which are the differences between the actual values and the predicted values from the current model. The final model 
is a weighted sum of the predictions from all the individual trees. However, it is also computationally intensive and 
requires careful tuning of hyperparameters. Gradient Boosting have popular implementations like XGBoost, LightGBM, 
and CatBoost, Here, we review the parameters we need to tune: 

 Learning Rate: The learning rate controls the contribution of each tree to the ensemble. A lower learning rate 
means the model learns more slowly, requiring more trees in the ensemble to achieve comparable performance. 
However, a lower learning rate can lead to better generalization. Conversely, a higher learning rate speeds up 
learning but may lead to overfitting if not carefully tuned. 

 Number of Estimators: This parameter specifies the number of boosting stages or trees to be built. Increasing 
the number of estimators generally improves model performance up to a certain point, after which the model 
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may start overfitting the training data. It is essential to find an optimal balance where adding more estimators 
increases performance without significantly increasing computation time or overfitting. 

 Maximum Depth: Also referred to as tree depth or max-depth, this parameter controls the maximum depth of 
each tree in the ensemble. Deeper trees can model more complex interactions in the data but are more prone 
to overfitting. Restricting the maximum depth helps prevent overfitting and improves generalization. It's 
crucial to tune max-depth along with other parameters to find the optimal trade-off between model complexity 
and performance. 

In this evaluation, we assessed four different Gradient Boosting methods including GBM, XGBoost, LightGBM, and 
CatBoost. The candidate values for the hyperparameters 𝑛 −  estimators = {100,300,500} , learning - rate =
{0.01,0.1,0.2} and max - depth = {3,5,7}. The results of GBM are presented in Table 7. We tried the method with and 
without PCA, and the GBM method had better performance before PCA, so we only include our result witout the feature 
reduction here. 

Table 7 Results of Gradient Boosting Classifier 

Configuration Accuracy Precision Training Time (s) 

n=100, rate = 0.01, depth = 3 0.9231 0.9394 0.2222 

n=100, rate = 0.01, depth = 5 0.9231 0.9394 0.2745 

n=100, rate = 0.01, depth = 7 0.9231 0.9394 0.2399 

n=100, rate = 0.1, depth = 3 0.9487 0.9412 0.2507 

n=100, rate = 0.1, depth = 5 0.9231 0.9394 0.2761 

n=100, rate = 0.1, depth = 7 0.9231 0.9394 0.2567 

n=100, rate = 0.2, depth = 3 0.9231 0.9394 0.1896 

n=100, rate = 0.2, depth = 5 0.9231 0.9394 0.2035 

n=100, rate = 0.2, depth = 7 0.9231 0.9394 0.2178 

n=300, rate = 0.01, depth = 3 0.9231 0.9394 0.7507 

n=300, rate = 0.01, depth = 5 0.9231 0.9394 0.8159 

n=300, rate = 0.01, depth = 7 0.9231 0.9394 0.8247 

n=300, rate = 0.1, depth = 3 0.8718 0.9091 0.6791 

n=300, rate = 0.1, depth = 5 0.9231 0.9394 0.6082 

n=300, rate = 0.1, depth = 7 0.9231 0.9394 0.4527 

n=300, rate = 0.2, depth = 3 0.9231 0.9143 0.4791 

n=300, rate = 0.2, depth = 5 0.9231 0.9394 0.3298 

n=300, rate = 0.2, depth = 7 0.9231 0.9394 0.4500 

n=500, rate = 0.01, depth = 3 0.9231 0.9394 1.5706 

n=500, rate = 0.01, depth = 5 0.9231 0.9394 1.7422 

n=500, rate = 0.01, depth = 7 0.9231 0.9394 1.4343 

n=500, rate = 0.1, depth = 3 0.8718 0.9091 0.9279 

n=500, rate = 0.1, depth = 5 0.9231 0.9394 0.7239 

n=500, rate = 0.1, depth = 7 0.9231 0.9394 0.5802 

n=500, rate = 0.2, depth = 3 0.9231 0.9143 0.6697 

n=500, rate = 0.2, depth = 5 0.9231 0.9394 0.4238 
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n=500, rate = 0.2, depth = 7 0.9231 0.9394 0.5200 

3.4.1. XGBoost 

XGBoost, or Extreme Gradient Boosting, is a scalable implementation of gradient boosting designed for supervised 
learning tasks. It helps control overfitting and supports parallel and distributed computing. 

XGBoost also includes advanced features like tree pruning and sparsity awareness. Proper tuning of hyperparameters 
is crucial to balance model complexity and performance, ensuring high accuracy without overfitting. We used the values 
in Table 7 for hyperparameter tuning, and the results are presented in Table 8 . 

Table 8 XGBoost Model Evaluation Results 

Configuration Accuracy Precision Training Time (s) 

n=50, rate = 0.01, depth = 3 0.8971 0.8891 0.0481 

n=50, rate = 0.01, depth = 5 0.8971 0.8891 0.0771 

n=50, rate = 0.01, depth = 7 0.8971 0.8891 0.0432 

n=50, rate = 0.1, depth = 3 0.9487 0.9412 0.0301 

n=50, rate = 0.1, depth = 5 0.9487 0.9412 0.0471 

n=50, rate = 0.1, depth = 7 0.9487 0.9412 0.0472 

n=50, rate = 0.2, depth = 3 0.9232 0.9392 0.0321 

n=50, rate = 0.2, depth = 5 0.9487 0.9412 0.0372 

n=50, rate = 0.2, depth = 7 0.9487 0.9412 0.0411 

n=100, rate = 0.01, depth = 3 0.8722 0.8862 0.1041 

n=100, rate = 0.01, depth = 5 0.8972 0.9121 0.1181 

n=100, rate = 0.01, depth = 7 0.8972 0.9121 0.1382 

n=100, rate = 0.1, depth = 3 0.9232 0.9391 0.0812 

n=100, rate = 0.1, depth = 5 0.9487 0.9412 0.1362 

n=100, rate = 0.1, depth = 7 0.9487 0.9412 0.1451 

n=100, rate = 0.2, depth = 3 0.9237 0.9391 0.0912 

n=100, rate = 0.2, depth = 5 0.9487 0.9412 0.0881 

n=100, rate = 0.2, depth = 7 0.9487 0.9412 0.1291 

n=150, rate = 0.01, depth = 3 0.8972 0.9122 0.1812 

n=150, rate = 0.01, depth = 5 0.8972 0.9122 0.3461 

n=150, rate = 0.01, depth = 7 0.8972 0.9122 0.3351 

n=150, rate = 0.1, depth = 3 0.9232 0.9391 0.1701 

n=150, rate = 0.1, depth = 5 0.9487 0.9412 0.1891 

n=150, rate = 0.1, depth = 7 0.9487 0.9412 0.1941 

n=150, rate = 0.2, depth = 3 0.9231 0.9391 0.1881 

n=150, rate = 0.2, depth = 5 0.9487 0.9412 0.1781 

n=150, rate = 0.2, depth = 7 0.9487 0.9412 0.2055 
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3.4.2. LightGBM 

LightGBM, or Light Gradient Boosting Machine, excels at handling large datasets and high-dimensional data with 
impressive speed and accuracy. This method transforms continuous features into a fixed number of bins, enhancing 
training speed and reducing memory usage. Additionally, LightGBM introduces Exclusive Feature Bundling (EFB), 
which combines mutually exclusive features into a single feature, thus lowering dimensionality and further accelerating 
the training process. LightGBM also supports parallel and distributed computing. The hyperparameter values used are 
same as GBM, and the algorithm's results are shown in Table 9. 

Table 9 Results of LightGBM evaluation with PCA 

Configuration Accuracy Precision Training Time (s) 

n=100, rate = 0.01, depth = 3 0.8461 0.8611 0.2493 

n=100, rate = 0.01, depth = 5 0.8461 0.8611 0.0318 

n=100, rate = 0.01, depth = 7 0.8461 0.8611 0.0278 

n=100, rate = 0.1, depth = 3 0.8205 0.8787 0.0221 

n=100, rate = 0.1, depth = 5 0.8717 0.9090 0.0295 

n=100, rate = 0.1, depth = 7 0.7948 0.8750 0.0316 

n=100, rate = 0.2, depth = 3 0.7948 0.9000 0.0282 

n=100, rate = 0.2, depth = 5 0.7948 0.9000 0.0281 

n=100, rate = 0.2, depth = 7 0.7435 0.8928 0.0245 

n=300, rate = 0.01, depth = 3 0.8205 0.8571 0.0581 

n=300, rate = 0.01, depth = 5 0.8205 0.8571 0.0637 

n=300, rate = 0.01, depth = 7 0.8205 0.8571 0.0586 

n=300, rate = 0.1, depth = 3 0.7692 0.8965 0.0609 

n=300, rate = 0.1, depth = 5 0.7435 0.8928 0.0669 

n=300, rate = 0.1, depth = 7 0.7179 0.8888 0.0571 

n=300, rate = 0.2, depth = 3 0.7692 0.9259 0.0569 

n=300, rate = 0.2, depth = 5 0.7435 0.9230 0.0564 

n=300, rate = 0.2, depth = 7 0.7435 0.9230 0.0581 

n=500, rate = 0.01, depth = 3 0.8205 0.8571 0.0892 

n=500, rate = 0.01, depth = 5 0.8461 0.8823 0.0877 

n=500, rate = 0.01, depth = 7 0.7948 0.8750 0.1054 

n=500, rate = 0.1, depth = 3 0.7435 0.8928 0.0693 

n=500, rate = 0.1, depth = 5 0.7435 0.9230 0.0970 

n=500, rate = 0.1, depth = 7 0.6923 0.9166 0.0912 

n=500, rate = 0.2, depth = 3 0.7179 0.8888 0.0881 

n=500, rate = 0.2, depth = 5 0.7435 0.9230 0.0907 

n=500, rate = 0.2, depth = 7 0.7692 0.9259 0.1033 

3.4.3. CatBoost 

CatBoost, which stands for Categorical Boosting, manages categorical features effectively, making it particularly well-
suited for datasets that include both numerical and categorical variables. One of CatBoost's standout features is its 
ability to handle categorical data directly. The algorithm is designed to mitigate prediction bias that can lead to 
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overfitting, ensuring more reliable training outcomes. CatBoost is optimized for performance, utilizing parallel 
processing to accelerate training times. It also incorporates sophisticated methods for addressing missing data and 
includes various regularization techniques to combat overfitting and enhance the model's ability to generalize. The 
results of the method are presented in Table 10 . 

Table 10 Updated CatBoost Classifier Results 

Configuration Accuracy Precision Training Time (s) 

n=100, rate = 0.01, depth = 3 0.846 0.861 0.164 

n=100, rate = 0.01, depth = 5 0.846 0.861 0.023 

n=100, rate = 0.01, depth = 7 0.846 0.861 0.028 

n=100, rate = 0.1, depth = 3 0.821 0.879 0.025 

n=100, rate = 0.1, depth = 5 0.872 0.909 0.028 

n=100, rate = 0.1, depth = 7 0.795 0.875 0.022 

n=100, rate = 0.2, depth = 3 0.795 0.900 0.021 

n=100, rate = 0.2, depth = 5 0.795 0.900 0.027 

n=100, rate = 0.2, depth = 7 0.744 0.893 0.029 

n=300, rate = 0.01, depth = 3 0.821 0.857 0.048 

n=300, rate = 0.01, depth = 5 0.821 0.857 0.051 

n=300, rate = 0.01, depth = 7 0.821 0.857 0.061 

n=300, rate = 0.1, depth = 3 0.769 0.897 0.053 

n=300, rate = 0.1, depth = 5 0.744 0.893 0.056 

n=300, rate = 0.1, depth = 7 0.718 0.889 0.066 

n=300, rate = 0.2, depth = 3 0.769 0.926 0.051 

n=300, rate = 0.2, depth = 5 0.744 0.923 0.055 

n=300, rate = 0.2, depth = 7 0.744 0.923 0.067 

n=500, rate = 0.01, depth = 3 0.821 0.857 0.080 

n=500, rate = 0.01, depth = 5 0.846 0.882 0.089 

n=500, rate = 0.01, depth = 7 0.795 0.875 0.092 

n=500, rate = 0.1, depth = 3 0.744 0.893 0.079 

n=500, rate = 0.1, depth = 5 0.744 0.923 0.096 

n=500, rate = 0.1, depth = 7 0.692 0.917 0.096 

n=500, rate = 0.2, depth = 3 0.718 0.889 0.074 

n=500, rate = 0.2, depth = 5 0.744 0.923 0.094 

n=500, rate = 0.2, depth = 7 0.769 0.926 0.095 

4. Results 

The evaluation results show that both GBM and XGBoost deliver high accuracy and precision, with XGBoost 
outperforming in terms of runtime efficiency. As anticipated, CatBoost did not perform as well due to the non-categorical 
nature of our data. 

4.1. Neural Networks 

Deep learning models can capture complex patterns in data through multiple layers of abstraction. For tabular data, 
fully connected neural networks can be effective. Neural networks can be tuned with various architectures, activation 
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functions, and regularization techniques (like dropout). Though they require more computational resources and 
training data, they can outperform traditional methods in many cases. 

4.2. Feedforward Neural Networks 

Feedforward Neural Networks (FNNs) are a type of artificial neural network where connections between nodes are 
unidirectional and do not form loops. In an FNN, information flows in a single direction-from the input layer, through 
any hidden layers, and to the output layer. The input layer handles the initial data, hidden layers carry out computations 
and feature transformations, and the output layer generates the final prediction. Neurons in each layer are fully 
connected to neurons in the subsequent layer through weighted connections. The output of each neuron is calculated 
as a weighted sum of its inputs, followed by a nonlinear activation function. Common activation functions include the 
sigmoid function, hyperbolic tangent (tanh), and rectified linear unit (ReLU). Training an FNN involves adjusting the 
weights and biases to minimize a loss function, which quantifies the discrepancy between predicted and actual 
outcomes. This is generally achieved through backpropagation and gradient descent. 

4.3. Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) are a type of neural network designed specifically for sequential data. Unlike 
feedforward neural networks, RNNs have connections that form directed cycles, enabling them to retain a memory of 
previous inputs and capture temporal dependencies. The primary feature of RNNs is their hidden state, which serves as 
a memory to store information about the sequence seen so far. One popular implementation, Long Short-Term Memory 
(LSTM), allows the network to maintain long-term dependencies more effectively. 

The results of the methods FNN, RNN and LSTM are presented in Table 11. All models except LSTM exhibit similar 
accuracy and precision values, with FNN and RNN both achieving an accuracy of 0.9230 and precision of 0.9393 . The 
LSTM, while showing the lowest accuracy at 0.8974 and precision at 0.8888 , demands significantly more training time 
compared to the other models. This increased time is indicative of the more complex architecture and the additional 
computational resources required for handling sequential dependencies. Among the models, FNN stands out with the 
fastest training time, demonstrating its efficiency in learning and processing data compared to the other architectures. 
Future work could explore advanced techniques such as regularization, dropout, and data augmentation to enhance the 
stability and performance of the LSTM model. 

Table 11 Performance comparison of different neural network models 

Model Accuracy Precision Training Time (s) 

FNN 0.9230 0.9393 3.3808 

RNN 0.9230 0.9393 7.8856 

LSTM 0.8974 0.8888 5.8171 

5. Conclusion  

In this study, we explored various machine-learning techniques to detect PD using speech features. By analyzing a 
dataset of voice recordings, we applied different models, including gcF , Logistic Regression, SVM, GBM, and neural 
networks. Based on the results obtained from the experiments, the algorithms gcF , SVM, and GBM demonstrated the 
best performance in terms of both accuracy and precision. This algorithm achieved 0.9487 and 0.9412 , indicating its 
superior ability in detecting Parkinson's disease using speech data. In addition, the training time is associated with SVM. 
Our findings suggest that automated 

speech analysis holds significant promise for early diagnosis of PD, potentially leading to improved patient outcomes 
through earlier intervention and treatment. The use of machine learning in this domain not only paves the way for non-
invasive diagnostic tools but also contributes to the broader field of biomedical informatics and computational health. 
For the future research, we suggest that the raw data of the voices to be used directly by RNN. This is because these 
methods can capture the pattern of the data and we may not need to obtain these futures and improve the diagnosis by 
using the whole information of the voice during time. 
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