
 Corresponding author: Ruchit Parekh 

Copyright © 2024 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0. 

Automating the design process for smart building technologies 

Ruchit Parekh *  

Department of Engineering and Management, Hofstra University, New York, USA. 

World Journal of Advanced Research and Reviews, 2024, 23(02), 1213–1234 

Publication history: Received on 01 July 2024; revised on 12 August 2024; accepted on 14 August 2024 

Article DOI: https://doi.org/10.30574/wjarr.2024.23.2.2461 

Abstract 

Smart buildings are emerging as complex cyber-physical systems that aim to provide safe, comfortable, energy-efficient, 
and aesthetically pleasing environments. However, traditional design methods are becoming inefficient due to 
increasing functional complexity, cost pressures, and market demands. This paper introduces a platform-based design 
(PBD) methodology for smart buildings. PBD promotes hardware and software reuse on shared infrastructures, enables 
rapid prototyping, and facilitates extensive design space exploration to optimize performance. We identify, abstract, 
and formalize key components of smart buildings, presenting a design flow that transforms high-level functional 
specifications into physical implementations within the PBD framework. To demonstrate the practical application of 
this approach, we present a case study on the design of an occupancy-responsive heating, ventilation, and air 
conditioning (HVAC) system.  

Keywords: Cyber-physical systems; Design automation; Machine learning; Smart buildings; Control systems; Energy 
efficiency; Platform-based design; HVAC optimization 

1. Introduction

The majority of our lives are spent indoors [1], with indoor environments significantly impacting our health, well-being, 
and productivity. In the United States, buildings consume 40% of primary energy [2], yet many occupants remain 
dissatisfied with their built environments [3], even in structures designed to be environmentally friendly [4]. The 
integration of cutting-edge technologies, including extensive sensing and actuation systems, sophisticated control 
mechanisms, and big data analytics, has catalyzed the transformation of buildings from basic structures to automated, 
multifunctional spaces. These "smart buildings" prioritize safety, health, comfort, affordability, and sustainability, while 
supporting reliable grid operations. The demand for such intelligent buildings has experienced rapid growth globally, 
with the market doubling triennially in both developed and emerging urban areas [5]. 

Smart buildings can be conceptualized through three key aspects: components, functions, and outcomes. Components 
encompass a wide array of interconnected technical equipment and appliances, including traditional systems like HVAC, 
lighting, and electrical networks, along with their associated sensing and control infrastructure. Emerging technologies 
such as on-site energy generation and storage systems are also integral components. These elements enable a diverse 
range of functions. For example, buildings equipped with power meters and energy storage capabilities can participate 
in demand response programs, while those with occupancy sensing can dynamically adjust indoor conditions (lighting, 
temperature, and air quality) to optimize energy usage. The functions a building can perform determine its level of 
intelligence and effectiveness, ultimately facilitating outcomes that benefit the environment, society, and economy, such 
as improved health, comfort, productivity, and energy efficiency. 

Significant research has been conducted on developing smart building functions, including advancements in 
communication [6], computing [7], and control systems [8]. However, the implementation and integration of these 
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smart functions have largely remained ad hoc and heuristic [9]. Conventionally, each application is designed and 
assembled as a standalone system. Consider a scenario where a building owner wants to implement both a demand-
controlled ventilation system and an occupancy-responsive lighting system. The ventilation system would require 
components such as an economizer with a modulating damper, occupancy counting sensors (e.g., cameras), and a 
controller to manage the system. The lighting system would need wireless passive infrared sensors for occupancy 
detection and daylight sensors. Despite the potential for shared data (like occupancy information), these systems often 
cannot integrate due to being sourced from different vendors. For instance, Lennox [10] specializes in ventilation 
services, while Lutron [11] focuses on lighting control solutions. This “one-function-one-box” approach allows for 
optimization of individual applications but limits opportunities for component reuse and cost reduction. Its widespread 
adoption is due to the complexity of smart building applications and the fragmented nature of the technology supply 
chain. 

An emerging alternative is the "application stack paradigm" [12], which enables component sharing across different 
functions. This approach is facilitated by innovations in building operating systems (BOSs), such as XBOS [7], which 
provide unified abstractions and controlled access to shared physical resources. In our ventilation and lighting example, 
this paradigm would allow both systems to utilize occupancy data from a single camera infrastructure, eliminating 
redundant hardware and software. However, even in this model, the integration of add-on infrastructure often occurs 
empirically, limiting the potential for cost-effective designs due to insufficient design space exploration (DSE). The 
advent of BOSs and application stacks is driving a shift in smart building technology from a vertical to a horizontal 
orientation, allowing independent component procurement and fostering competition among software providers. 

The two previously discussed paradigms for integrating smart building functions are encountering growing challenges, 
necessitating a more structured design approach. These challenges include: 

 Cost considerations: Building upgrades are highly cost-sensitive. As buildings grow in size and complexity, the 
expenses associated with additional sensors and system setup increase significantly. For instance, retrofitting 
a commercial building's HVAC system for occupancy responsiveness would require occupancy sensors at every 
entry and exit point on each floor. Implementing more granular control or personalized settings would demand 
even more sensors, escalating hardware and installation costs. However, substantial savings could be realized 
by efficiently utilizing existing infrastructure and sharing resources across functions. For example, repurposing 
security cameras for occupancy detection or leveraging Wi-Fi networks [13] and scheduling systems for 
occupancy inference could prove cost-effective. 

 Escalating functional complexity: The next generation of smart buildings will need to support an expanding 
array of sophisticated functions, such as automated waste management, self-cleaning systems, personalized 
environmental control, and optimized space utilization. These functions are intricate, decentralized, and 
interdependent. Future buildings are expected to provide customized environments tailored to individual 
occupants' preferences, locations, and activities. Moreover, buildings must respond to both internal occupant 
needs and external factors like power grid demands and on-site energy generation. This necessitates a 
comprehensive approach to building management, balancing multiple objectives including occupant comfort, 
carbon reduction, energy conservation, and grid stability. Integrating these diverse functions requires multi-
stage planning and coordination, presenting unprecedented challenges in managing system complexity and 
interdependencies. 

 Adoption barriers for new technologies: Smart buildings represent a multidisciplinary field, involving diverse 
industrial systems and engineering disciplines. Technological advancements in this domain are equally varied, 
spanning from sustainable architectural designs and energy-efficient sensor networks to advanced control 
algorithms and data analytics. However, building owners, who are responsible for integrating these functions, 
often lack a comprehensive understanding of the synergistic benefits of combining different technologies. This 
knowledge gap, coupled with the absence of a unified platform for abstracting, modeling, and validating new 
technologies, hinders their adoption. For example, while commercial occupancy counting systems typically use 
thermal or video-based solutions, promising research has been conducted on using more cost-effective and 
privacy-preserving alternatives like CO2 sensors. Machine learning and dynamic systems theory [14] have been 
applied to enhance the accuracy and responsiveness of CO2-based occupancy detection. Parallel efforts have 
focused on miniaturizing and reducing the cost of CO2 sensors. Developing optimal smart building solutions 
often requires diverse expertise from various engineering disciplines. However, current implementation 
approaches lack systematic methods for exploring and incorporating new technologies across different levels, 
often resulting in suboptimal designs. Furthermore, buildings are dynamic environments, with changing room 
uses, occupant preferences, and aging systems. Consequently, building system design is an ongoing process 
throughout a structure's lifecycle, necessitating a design methodology that not only effectively translates 
specifications into implementations but also adapts efficiently to changing requirements over time. 
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Considering these challenges and opportunities, a new paradigm emerges: an automated, structured, and integrated 
design approach. This paradigm aims to enhance the efficiency and cost-effectiveness of building application 
prototypes. The design process begins with high-level specifications from the building owner, progressing to the 
automatic synthesis of functions and their implementations that fulfill these requirements. 

This approach encapsulates expertise and experience from various system designers into structured libraries, 
facilitating future design practices. By organizing interfaces between different libraries coherently and consistently, 
each library can be independently enhanced while maintaining seamless integration with others. This modularity allows 
for comprehensive exploration of the design space. The library concept promotes hardware and software reuse on 
shared infrastructures, enabling extensive design space exploration (DSE) to optimize performance. 

Automating the design process is expected to streamline the design flow and simplify the reconfiguration of building 
systems for diverse applications. Unlike the application stack paradigm, our proposed approach enables principled DSE, 
resulting in designs with quantifiable benefits in cost savings, comfort, and other metrics. To illustrate, we revisit the 
lighting and ventilation example. Our paradigm, through DSE, might opt for a WiFi-based occupancy counter over a 
camera-based system, leveraging existing WiFi infrastructure for a more economical and privacy-conscious solution. 

This paper adopts platform-based design (PBD) as a unifying methodology for automated, structured, and integrated 
building application design. PBD has been successfully applied in various domains, including hardware-software 
codesign [15], analog circuit design [16], automotive electronics [17], and communication systems [18], both at chip 
and system levels. The PBD approach consists of two phases: 

 Bottom-up phase: Generates libraries by abstracting behavioral models, performance models, and composition 
rules for components. 

 Top-down phase: Comprises optimization steps where a cost function is minimized over the library 
components, streamlining DSE while focusing on promising solutions. 

The paper is structured as follows: 

 Section II: Provides a conceptual overview of PBD methodology and our proposed integrated design flow for 
smart buildings. 

 Section III: Details the construction of design libraries in the bottom-up phase. 
 Section IV: Elaborates on the top-down design flow. 
 Section V: Presents an illustrative case study. 
 Section VI: Concludes the paper and discusses future directions. 

This structured approach aims to address the complexities of smart building design, offering a more systematic and 
efficient method for developing and implementing advanced building technologies. 

2. PBD Overview and Proposed Design Methodology 

2.1. PBD Framework 

Platform-based design (PBD) [19] was initially conceived to tackle the growing intricacies of hardware-software 
codesign in embedded systems. The core principle of PBD is the separation of concerns, particularly distinguishing 
between function (system purpose) and architecture (implementation method). This separation facilitates more 
effective exploration of design alternatives. For instance, a video decoder could be implemented entirely in software on 
a general-purpose CPU or as a hybrid hardware-software solution, with certain functions allocated to a specialized 
coprocessor for enhanced performance. These design choices are informed by a comprehensive design space 
exploration (DSE) process, detailed in [20]. 

PBD's fundamental approach involves: 

 Initiating design at the highest abstraction level 
 Concealing non-essential implementation details 
 Encapsulating key implementation parameters in abstract models 
 Constraining DSE to a predefined set of library components 
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 Progressing through a series of refinement stages from initial specifications to final implementation, utilizing 
platforms at various abstraction levels [20]-[22] 

In the PBD context, a platform is defined as a library of components and their composition rules, used to generate 
designs at a specific abstraction level. It essentially parameterizes the solution space. The design process in PBD is 
neither purely top-down nor bottom-up, but rather a "meet-in-the-middle" approach comprising two phases: 

 Bottom-up: Constructing a design platform by defining components and their abstractions, encompassing both 
physical and cyber aspects in cyber-physical systems (CPS) [23]. 

 Top-down: Formalizing high-level design requirements and mapping them to lower-level platform 
implementations. 

A component (M) in a PBD library is characterized by: 

 Input ports (U), output ports (Y), internal variables (X), and configuration parameters (K) 
 A behavioral model, represented by dynamic equations or automaton-recognized sequences 
 Extra-functional models for non-functional attributes (e.g., cost, performance) 
 Labels indicating function and features 

The mapping process between abstraction levels is framed as a multi-objective optimization problem, optimizing 
performance metrics within constraints set by the platform library and design requirements. This mapping must 
preserve the model's semantics to ensure the validity of verified properties post-implementation. 

PBD effectively combines elements of the layered design approach [25], which formalizes vertical abstraction and 
refinement, with component-based design [26], addressing composition and decomposition at each abstraction level. 
This synthesis creates a robust framework for tackling complex design challenges in smart building systems. 

B. Proposed Design Flow Overview 

We adapt the PBD paradigm for the automated design and integration of smart building systems. Our approach 
incorporates Design Space Exploration (DSE) at various stages of the design process, informing both high-level decisions 
(e.g., ventilation strategy selection) and low-level choices (e.g., CO2 sensor specifications). The success of this PBD 
methodology hinges on establishing appropriate intermediate design platforms, their strategic placement, and 
component selection [27]. 

Our proposed design flow is structured into three distinct layers 

 Function Design Layer 
 Module Design Layer 
 Implementation Design Layer 

Each layer is associated with a specific library: 

 Virtual Device Platform 
 Module Platform 
 Implementation Platform 

In our framework, modules serve as fundamental design elements, representing basic functions like computation, 
sensing, and actuation. A prototype design, composed of interconnected modules, can be simulated in a design 
environment to verify its functionality before deployment. This modular abstraction decouples high-level functions 
from the specifics of the implementation platform (e.g., building infrastructure, device drivers, Building Operating 
System). 

More complex functionalities are achieved by combining modules into sophisticated components. We introduce the 
concept of a "virtual device" - an abstract component built from modules that performs a high-level function. These 
virtual devices can serve as building blocks for various building functions, both existing and novel. 
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To efficiently leverage different implementation architectures, we employ architecture templates, including function 
templates and virtual device templates. These templates define the composition rules for assembling abstract 
components. Function templates specify how virtual devices combine to achieve certain functions, while virtual device 
templates outline how modules can be assembled into virtual devices. 

Our design flow follows a library-based approach throughout: 

 Function Design Layer: Top-level specifications are mapped to a prototype design using virtual devices and 
function templates from the virtual device library. 

 Module Design Layer: The prototype design is further refined into a set of interconnected modules, again using 
a template-based DSE approach. 

 Implementation Design Layer: All abstractions from previous layers are fully instantiated with hardware or 
software implementations on the target building platform. 

This structured, layered approach allows for systematic refinement of the design, from high-level concepts to concrete 
implementations, while maintaining flexibility and optimizing for efficiency at each stage 

3. Bottom-Up Design Flow 

Our proposed design methodology employs a "meet-in-the-middle" approach, extensively utilizing library components 
across all design layers. This framework allows for flexibility: if existing library components fail to meet design 
specifications or yield unsatisfactory results, new elements can be designed and incorporated into the library. While 
our focus is primarily on cyber components, models of fixed physical elements (e.g., building structure, equipment, 
occupants) are included in the design library to provide a comprehensive environmental context. 

A crucial aspect of the library system is the set of composition rules that govern the correct assembly of components 
throughout the design process. These rules fall into two main categories: 

1. Port constraints: Ensure proper information types are exchanged between components. 

2. Design rules: Guarantee functional correctness and compliance with relevant laws and building codes. 

These rules are structured hierarchically, similar to the components themselves. For instance, a high-level rule like "no 
cameras in bathrooms" is implemented as a design constraint in the module design library, while a more specific rule 
such as "ZigBee-protocol sensors must be within 5m range" is applied during the final implementation phase as a device 
placement constraint. 

Architecture templates, previously mentioned, represent a special class of composition rules. These become active only 
when selected for a design implementation and embody a set of structural constraints defining a family of potential 
solutions for a given functionality. 

3.1. Implementation Platform 

The foundation of our design library is the implementation platform. In our framework, this consists of a Building 
Operating System (BOS) and associated device drivers. The BOS is responsible for: 

 Scheduling available hardware resources (computing, sensing, actuation, etc.) 
 Managing inter-component communication 
 Providing resource access through: 

o Application Programming Interfaces (APIs) for sensing and control points 
o Execution environments for computational resources 

It's important to note that the actual implementation of the upper-level module platform may vary slightly when 
deployed in different buildings, depending on the specific BOS in use. This adaptability allows our design framework to 
accommodate diverse building environments and operating systems while maintaining a consistent overall structure. 
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3.2. Module Platform 

The module platform library Lm is structured as a triplet (Cm, Tm, Rm), comprising modules Cm, virtual device templates 
Tm, and design rules Rm. Module behavior is typically represented through input-output relationships, with additional 
attributes or characteristics denoted by module labels. To accurately represent module costs, a dual-component 
approach is often employed: investment cost (initial setup expenses) and operational cost (ongoing expenses and 
potential depreciation). 

Our design framework incorporates not only models for fundamental functions like sensing, actuation, and 
computation, but also representations of physical processes and human behaviors. The specific implementation of a 
module is contingent on the actual platform used. When multiple implementations exist for the same functionality, 
designers must decide whether to create a single, parameterized module or separate, distinct modules. This decision 
often hinges on the degree of similarity between implementations and involves balancing granularity with optimality. 

Consider, for instance, two humidity sensing modules: one wired and one wireless. Given their significant differences in 
latency and cost, it may be more advantageous to design them as separate modules. This approach allows for simpler, 
more accurate latency and cost models for each module, enhancing overall design flexibility and precision. 

Table 1 Sensing Module 

Modules Behavioral Model Extra-Functional Model 

Sensing Device Input Output Cost 

TMP36 Temperature 
Sensors 

Temperature: 40 °C - 
125 °C 

Temperature measurement with 
±1°C accuracy 

Low ($1.5) 

HIH-4030 SparkFun 
Humidity Sensor 

Humidity: 20% RH - 
80% RH 

Relative humidity measurement 
with 15% RH accuracy 

Low ($16.95) 

OPT3001 Ambient Light 
Sensor 

Illuminance: 0.01 - 83 
klux 

Brightness measurement with 
0.5 lux accuracy 

Low ($2.48) 

Telaire T6615 CO2 
Sensor 

CO2: 0 - 5000 ppm 
CO2 measurement with 75 ppm 
accuracy 

Medium ($98.8) 

Efergy E2 classic energy 
monitor 

Power consumption: 5 
W - 120 kW 

Energy consumption 
measurement with 3W accuracy 

Medium ($120) 

 

We now outline several key module types commonly employed in constructing higher-level functions: 

Sensing Modules: These provide fundamental data acquisition services. Typically, a sensing module consists of sensing 
hardware coupled with its corresponding device driver. Importantly, the concept of a "sensor" extends beyond 
traditional physical sensors; for instance, a smartphone interacting with a building occupant can function as a sensor. 
In our framework, we associate each piece of sensing hardware with a distinct sensing module that serves as its 
abstraction. Table 1 illustrates various sensing module examples, detailing their behavioral models (as input-output 
relations) and associated costs (as extra-functional properties). 

Control Modules: These modules embody decision-making services for control actions, such as setpoint determination. 
In optimal control approaches like Model Predictive Control (MPC), the module processes a set of constraints and sensor 
readings, then employs an optimization engine to derive the optimal control action. Another prevalent approach is fuzzy 
control, where the module utilizes fuzzy logic to compute control actions.  

Actuation Modules: These modules implement high-level control directives from control modules on physical building 
systems. For example, they might execute a command like "adjust airflow volume to 0.236 m3/s." Actuation modules 
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are realized through specific drivers in the Building Operating System (BOS). These drivers encapsulate device-specific 
logic, providing a standardized interface that abstracts the underlying hardware complexities. 

Data Analytics Modules encapsulate the processes of developing and applying predictive and inferential models. These 
modules often utilize machine learning algorithms to estimate contextual information such as occupancy levels and 
thermal comfort based on sensor inputs from the building environment. 

Each data analytics module is conceptualized as a dual mode switched system: 

 Training Mode: This phase involves learning or deriving model parameters from available data, including 
historical datasets, documentation, and expert knowledge. The output is a set of parameters defining a model 
for subsequent testing. 

 Testing Mode: In this phase, the module applies the trained model to generate outputs based on input data 
and the established model parameters. 

The module handles various data types: 

 Categorical (e.g., user identities, event types) 
 Ordinal (e.g., thermal preferences, event criticality) 
 Measurement (e.g., air temperature, humidity) 

Data analytics modules vary in their training requirements, which we classify into three intensity levels: low, medium, 
and high. For example: 

 Low: Threshold-based occupancy inference from PIR and Wi-Fi data 
 Medium: Physics-based methods like "sense-by-proxy" [14], requiring hours to a day of training 
 High: Data-driven machine learning approaches, often needing several days of data collection 

Algorithms can be categorized using various methods, with sample complexity measures like Rademacher complexity 
being popular for relating performance bounds to data volume [28]. From a practical standpoint, training intensity is 
crucial as it directly impacts the labor and maintenance efforts required for deployment. 

3.3. Virtual Device Platform 

The virtual device platform library Lf, analogous to the module platform, is structured as a triple (Cf, Tf, Rf), comprising 
virtual devices Cf, function templates Tf, and design rules Rf. Each virtual device's implementation architecture is 
defined by its corresponding template in the module platform library Lm. Virtual devices, like modules, are 
characterized by input-output relationships. Given the diversity of potential implementations, cost estimations for 
virtual devices may be expressed as ranges, nominal values, or qualitative assessments. 

To illustrate, we present several examples of virtual devices, with their detailed behavioral and extra-functional models 
summarized in Table 2: 

Virtual Occupancy Sensor: This device reports a zone's occupancy status, either as an integer (number of occupants) or 
a binary value (occupied/unoccupied). Multiple implementation architectures are possible, including CO2-based [14], 
camera-based, Wi-Fi-based [33], and PIR-based solutions. Each architecture is represented as a distinct virtual sensor 
in the library. 

Virtual Fault Detection Sensor: This device monitors an HVAC system's operational health. Various methodologies have 
been proposed for HVAC fault detection and diagnosis, utilizing existing building data: 

 Analytical-model-based: Relies on explicit system descriptions 
 Signal-based: Examines correlations between faults and system outputs 
 Knowledge-based or data-driven: Extracts insights and relevant features from building data, considering 

external environmental factors, internal loads, and mechanical system conditions [39], [40] 

Each of these methodological approaches is embodied as a separate virtual fault detection sensor within the library. 
This diversity allows designers to select the most appropriate fault detection strategy based on the specific 
requirements and constraints of each building project. 
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A virtual VAV (Variable Air Volume) controller manages setpoints for a VAV box, such as air flow rate and discharge air 
temperature. Two common approaches that integrate occupant feedback are rule-based control and Model Predictive 
Control (MPC). Rule-based controllers use straightforward "if-else" logic for decision-making, while MPC employs 
predictive modeling and real-time optimization to determine optimal control actions. 

The key distinction between the virtual device platform and the module platform is their abstraction level. The module 
platform comprises basic functions like sensing, actuation, and computation, whereas the virtual device platform 
encompasses higher-level functions built from these basic components. For example, a virtual occupancy sensor might 
combine a sensing module with a data analytics module to interpret occupancy information from raw sensor data. 

Building functions are created by integrating virtual sensors and controllers into a closed-loop system that interacts 
with the physical environment and occupants. Function templates describe the interconnections between these 
components and are tagged with features defining their type and capabilities. 

In this system, occupants vote on shared lighting brightness preferences, earning points based on the energy efficiency 
of their choices. The average vote determines the implemented lighting level, and accumulated points influence lottery-
winning probabilities. A mobile app facilitates voting, point tracking, and observation of others' consumption patterns. 
The platform stores historical data, enabling building managers to model occupant behavior (utility functions) and 
design incentives to encourage energy-saving practices. 

The architecture comprises an environmental component, a virtual sensor, and a virtual controller. These virtual 
devices can be implemented in various ways, as the underlying modules are not fully specified. For instance, the "utility 
function estimator" within the virtual sensor could use different parameter estimation techniques. 

This example showcases how higher-level building functions can be constructed from virtual devices, which in turn are 
built from more basic modules. It also demonstrates the flexibility of the proposed design framework in accommodating 
diverse implementation strategies. For a more comprehensive explanation of this system, readers are directed to [41] 
and [42].  

Table 2 Virtual Devices 

Modules Behavioral Model Extra-
Functional 
Model 

Object Method Input Output Cost 

Virtual occupancy 
sensor 

CO2-based Indoor CO2 Occupancy count with 
high accuracy and delay 

Medium 

  Camera-based Illuminance > 50 lux Occupancy count with 
high accuracy and no 
delay 

High 

  PIR Human mid-infrared radiation 
changes 

Occupancy status with 
mid accuracy and no 
delay 

Low 

Virtual 
environmental 
sensor 

Temperature Dry-bulb temperature Ambient temperature Low 

  Temperature & 
humidity 

Dry-bulb temperature, 
humidity 

Ambient temperature, 
humidity 

Low 

Virtual VAV 
Controller 

Rule-based Occupancy count with at least 
mid accuracy, comfort 
preference, ambient 
temperature and humidity 

HVAC air flow control Medium 
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  MPC Occupancy count with at least 
mid accuracy, comfort 
preference, ambient 
temperature and humidity 

HVAC air flow control High 

Virtual lighting 
controller 

Rule-based Occupancy status with at least 
mid accuracy and zero delay 

Lighting ON/OFF 
control 

Medium 

Virtual fault 
detection sensor 

Model-based Room air temperature, supply 
air temperature, humidity 

If in the abnormal 
situation 

Low 

  Data-driven Temperature, humidity, 
pressure, flow rate, damper 
position, fan speed, etc 

Fault type and severity High 

4. Top-down design flow 

The top-down design process begins with a set of high-level specifications provided by the designer. These 
specifications encompass both functional and extra-functional requirements for the final design. Functional 
requirements, such as "implement an occupancy-responsive HVAC system," are represented as a set of predefined 
features in the design automation tool. Extra-functional requirements, like "total retrofit cost must not exceed 
$100,000," are expressed as algebraic constraints. 

4.1. Function Design Layer 

In this initial layer, the input specifications are translated into a prototype design MT. This prototype is constructed by 
selecting and assembling virtual devices C and function templates T from the library. To ensure the prototype's 
functional correctness, the features offered by T must encompass all those specified in the functional requirements. 

Although the components in this prototype design are not fully realized at this stage, it's still possible to generate a cost 
estimate cost (MT) based on the individual costs of the selected virtual devices. It's important to note that virtual sensors 
can be utilized across multiple functions, potentially reducing overall costs. 

The mapping process in this layer can be framed as a combinatorial optimization problem. The objective is to identify 
the optimal combination of virtual devices and function templates that minimizes cost (MT), while adhering to the 
composition rules that act as constraints. This approach allows for a systematic exploration of design options within the 
defined parameters, balancing functionality and cost-effectiveness from the earliest stages of the design process. 

4.2. Module Design Layer 

Building upon the function architecture established in the previous layer, the module design layer aims to further refine 
the design by incorporating specific modules from the library. This layer provides a more detailed view of the final 
design, enabling more precise performance and cost estimations during the Design Space Exploration (DSE) process. 

This stage also uncovers new opportunities for component reuse that weren't apparent earlier, potentially leading to 
further cost reductions. For instance, a single multiuse building-in-briefcase (BiB) sensing module [43] might serve the 
functions of both humidity and CO2 sensing, originally specified as separate virtual devices, provided this doesn't create 
conflicts between individual module specifications. 

The mapping process in this layer, while still template-based, differs from the previous layer in two key aspects: 

 It involves selecting both components and their parameters, making it a mixed discrete-continuous 
optimization problem. 

 It allows for the use of simulation techniques to more accurately estimate operational costs. 

To manage the potentially infinite parameter space, discretization techniques and empirically based heuristics can be 
employed to expedite the search for a satisfactory design. 

A significant advantage of the Platform-Based Design (PBD) approach is its capacity to identify integration errors early 
in the design process. While predefined composition errors are avoided through the enforcement of design rules, subtle 
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interaction-based integration errors may still occur. For example, in a smart lighting system using a camera-based 
occupancy sensor, the system might fail to detect people entering a dark room, violating the intended functionality 
(occupants present ↔ lights on). 

Although components aren't fully instantiated at this stage, such issues can be identified using formal methods like 
model checking [44] or through simulation techniques. When errors are detected, the DSE process continues iteratively 
until a validated design is achieved. 

This approach allows for a more robust and error-resistant design process, catching potential issues before they become 
costly problems in the implementation phase. 

4.3. Implementation Design Layer 

The final layer focuses on determining the specific details for deploying the designed functions in the target building. 
This process assumes the presence of a Building Operating System (BOS) that simplifies much of the deployment 
complexity. Key tasks in this layer typically include: 

 Deploying the BOS 
 Strategically placing and configuring sensing devices 

The standardized access to diverse building resources provided by BOSs has significantly simplified module 
deployment. Consider a retrofit scenario where an intelligent HVAC function is being implemented, requiring the 
installation of additional sensors. This function aims to conserve energy by dynamically adjusting each room's discharge 
air temperature setpoint based on occupancy. The required modules can be converted into executable code for the 
target BOS platform using automated code generation techniques, as demonstrated in previous research [15]. For 
instance, high-level descriptions like "discharge air temperature setpoint in Room 406" can be automatically translated 
into unique BACnet identifiers during the code generation process. 

The challenge of sensor placement has been addressed through various approaches in literature [45], often framed as 
either an optimization problem or a constraint satisfaction problem. The solution must adhere to specified design rules 
and requirements. For example, CO2-based occupancy detection sensors must be positioned near air exhaust vents in 
mixing ventilation systems [46], or within occupied zones in displacement or underfloor air distribution systems [47], 
to accurately measure exhaust air CO2 levels. 

While beyond this paper's scope, the deployment phase presents additional system design challenges, such as efficient 
scheduling and partitioning of building functions on the execution platform. Although many building functions don't 
have strict real-time requirements like other time-critical cyber-physical systems (CPSs), running numerous functions 
concurrently on the BOS can lead to significant system latencies due to service requests (e.g., data acquisition). The 
proposed integrated design approach can mitigate these issues by encouraging component reuse at the function design 
level. 

Given recent advancements in system-level design for networks [16], [18] and software [48], [49], we anticipate that 
the Platform-Based Design (PBD) paradigm will play a crucial role in addressing these challenges within the BOS 
context, further enhancing the efficiency and effectiveness of smart building implementations.  

5. Case study 

This section presents a case study to demonstrate the application of our proposed design flow. We consider a scenario 
where a designer aims to retrofit an existing building's HVAC system to enhance energy efficiency and occupant 
responsiveness within a reasonable budget. The case study illustrates how the designer's specifications are translated 
into a concrete hardware and software implementation using the Platform-Based Design (PBD) approach. 

Initially, the building designer outlines a set of project requirements, including: 

 Targeted energy consumption savings 
 Comfort criteria 
 Budget limitations 
 Expected return on investment timeline 
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Additionally, a comprehensive building model (e.g., a Building Information Modeling (BIM) file) is provided to the design 
tool, offering detailed information about the building's structure, occupancy patterns, and other relevant data. 

For this case study, let's assume the following specifications: 

 Building classification: Commercial 
 Total area: 10,000 m² 
 Current yearly energy expenses: $5,000 
 Target system for retrofit: HVAC 
 Comfort parameters: Static setpoints (20°C–25°C) 

Financial constraints:  

 Minimum energy savings: 30% 
 Maximum payback period: 3 years 
 Initial investment cap: $100,000 

In this context, comfort requirements are classified as either "static setpoints" or "personalized." The "static setpoints" 
approach adheres to standardized thermal comfort guidelines, such as ASHRAE 55-2013 [50], maintaining dry-bulb air 
temperature within a specified range (e.g., 20°C–25°C), possibly with additional relative humidity constraints. This 
method is cost-effective to implement as it doesn't require extra infrastructure for gathering occupant feedback. 
However, it may not account for individual preferences or building-specific characteristics. 

Conversely, "personalized" control strategies, like Comfy [51], allow for customized comfort ranges based on occupant 
preferences. These can include personal comfort systems such as heated/cooled chairs [52] or desk fans [53], 
potentially improving satisfaction and energy efficiency. Personalization can be implemented at group or individual 
levels [54] and can adapt to changing comfort needs due to environmental or physiological/psychological factors. 
However, implementing personalized comfort systems requires additional investment in hardware (e.g., comfort 
devices, sensors) and software (BOS capable of processing occupant feedback). 

For this case study, we're using a static temperature range as the comfort requirement. However, it's important to note 
that our design paradigm can accommodate more complex specifications, including dynamic setpoints and 
considerations for other comfort factors like humidity and air quality. The design framework is flexible and can be 
adapted to various specifications. For example, if humidity control were required, the system would incorporate 
humidity sensors and controllers capable of real-time humidity data processing. 

5.1. Function Design Layer 

In this initial layer, the mapping engine refines the high-level design specifications into a set of virtual device 
components. These components are based on function templates selected from the library, forming an architecture 
instance. 

The HVAC templates are: 

 APP-HVAC-1: Labeled "static setpoints," this template infers comfort levels from ambient environmental 
measurements, without direct occupant interaction. 

 APP-HVAC-2: Labeled "personalized," this template requires occupant feedback to adjust the comfort range 
for building control. 

The virtual device platform library contains three categories of virtual devices. Each virtual device abstraction includes 
essential implementation details such as behavior, cost, and performance metrics, enabling the design automation tool 
to make informed selections. 

Virtual Occupancy Sensors: Represented by three variants in the library: 

 VS-occup-1: Offers superior occupancy counting accuracy but is typically expensive and may raise privacy 
concerns. 

 VS-occup-2: Implements a "sense-by-proxy" [14] approach, inferring occupancy from CO2 concentration. 
While more cost-effective than VS-occup-1, it often experiences some latency in occupancy estimation. This 



World Journal of Advanced Research and Reviews, 2024, 23(02), 1213–1234 

1224 

latency, while not critical for HVAC control, makes it unsuitable for applications like lighting control that 
require immediate response. 

 VS-occup-3: Provides binary occupancy status (occupied/unoccupied). 

This diverse range of virtual devices allows the design tool to select the most appropriate components based on the 
specific requirements and constraints of the project, balancing factors such as accuracy, cost, privacy considerations, 
and response time. 

 Virtual Environmental Sensors: The virtual device library includes three environmental sensor options: 
o VS-env-1: A multimodal sensor capable of measuring both temperature and humidity in indoor spaces. 
o VS-env-2: A unimodal sensor dedicated to temperature measurement. 
o VS-env-3: A unimodal sensor specifically for humidity detection. 

 Virtual VAV Controllers: Two types of virtual Variable Air Volume (VAV) controllers are available, 
o VC-vav-1: Implements rule-based control, a widely adopted approach in existing buildings. This 

controller uses straightforward "if-else" logic for decision-making, making it relatively simple to set 
up and deploy. 

o VC-vav-2: Utilizes Model Predictive Control (MPC), an advanced optimal control strategy gaining 
significant attention in recent years. While more complex to implement, MPC offers potential 
benefits: 

Requires more comprehensive input data, including temperature, humidity, and occupancy measurements. 

Incorporates both a thermodynamic model and a comfort model to compute optimal control actions. 

Has demonstrated superior energy-saving capabilities compared to rule-based controllers in previous studies [8], 
largely due to its predictive and optimization capabilities. 

The choice between these controller types involves a trade-off between ease of implementation and potential energy 
savings. While rule-based controllers are simpler to deploy, MPC controllers offer the promise of greater efficiency 
through more sophisticated decision-making processes. This diversity in virtual device options allows the design tool 
to select the most appropriate components based on the specific project requirements, balancing factors such as energy 
efficiency, implementation complexity, and available resources. 

The Design Space Exploration (DSE) process in this layer can be formulated as a discrete optimization problem, aiming 
to find the optimal mix of function templates and virtual devices. Consider a design library with m function templates 
and n virtual devices. We define: 

 z ∈ {0, 1} ^m: A binary array indicating the selection status of each template Ti 
 x ∈ N^n+: An array representing the selection of virtual devices, allowing multiple instances of each device 
 ci: The purchase cost associated with each virtual device Vi 
 (z, x): The operational cost linked to the chosen function template and virtual devices 

The operational cost o (z, x) can be estimated through simulations during library construction. Fig. 1 demonstrates this 
concept, showing heat and electricity consumption for a simple building using various virtual controllers and occupancy 
sensors under the APP-HVAC-1 function template. The simulation employs real-world occupancy data and San 
Francisco weather information. 

Key insights from the simulation include: 

 An occupancy counter is crucial for Model Predictive Control (MPC) to achieve higher energy efficiency in 
building control. 

 Increasing the accuracy of occupancy counting beyond a certain point does not yield significant additional 
energy savings. 

The operational cost can be derived from the simulated energy consumption data, combined with local energy prices 
for the building's location. This approach allows for a more accurate estimation of long-term costs and benefits 
associated with different design choices, enabling the optimization process to balance initial investment against 
operational efficiency. 
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Figure 1(a) Site Heat Energy Consumption 

 

Figure 1(b) Site Heat Energy Consumption 

Let's define our key parameters: 

 PH: Maximum allowed payback horizon 
 ES: Minimum expected energy savings 
 SC: Maximum available starting capital 
 EB: Current annual energy bill pre-retrofit 

For our case, PH = 3 years, ES = 30%, and SC = $100,000 (as per your earlier instruction to use $100,000 instead of 
$50,000). 

We can express the payback horizon for the retrofit investment as: 

h (z, x) = (Σ (i=1 to n) x_i c_i) / (EB - o(z, x)) (1) 

where x_i and c_i represent the quantity and cost of each virtual device, respectively. 

We can then formulate an optimization problem to minimize the payback horizon: 

Minimize h (z, x) (2a) 

Subject to: 

z |= ψ, (z, x) |= φ (2b) 

h(z, x) ≤ PH (2c) 
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o(z, x) ≤ (1 - ES) EB (2d) 

Σ(i=1 to n) x_i c_i ≤ SC (2e) 

In constraint (2b), the |= operator denotes a "satisfies" relationship between binary variables and their properties. Here, 
z |= ψ ensures all required features are included in the design, while (z, x) |= φ ensures adherence to composition rules. 

If this optimization problem yields an infeasible result, the design automation tool can analyze the conflicting 
specifications and offer recommendations to the designer. Otherwise, the design process advances to the next stage. 

Based on the virtual device attributes in our example library, the mapping engine's selected implementation is 
illustrated in Fig. 2. 

This approach allows for a systematic exploration of the design space, balancing multiple objectives and constraints to 
find an optimal solution that meets both functional requirements and economic considerations. 

5.2. Module Design Layer 

This layer's primary goal is to realize each virtual device from the upper layer using specific modules and predefined 
templates from the module library.  

5.2.1. Virtual VAV Controller Templates 

For simplicity, we use identical identifiers for both virtual devices and their architecture templates. The module 
platform offers two types of VAV controller templates. 

 VC-vav-1: A rule-based controller that processes real-time measurements of temperature, humidity, and 
occupancy, along with predefined comfort parameters. It adjusts air flow rate and temperature based on 
encoded rules such as: 

"Minimum airflow rate proportional to occupant count" 

"Wider temperature range during unoccupied periods" 

 VC-vav-2: A Model Predictive Control (MPC) scheme utilizing an optimal control module (CTRL-1). This 
module formulates and solves a real-time optimization problem to determine optimal control actions. In 
addition to current environmental data, it requires: 
o Future occupancy predictions (ML-occup-pred) 
o A thermodynamic model for state prediction (ML-phy) 
o Comfort models for various occupancy states (ML-comf) 

5.2.2. Virtual Occupancy Sensor Templates 

The module library provides three types, 

 VS-occup-1: An architecture employing a camera module and computer vision algorithm to count occupants 
in video streams. 

 VS-occup-2: Utilizes a "sense-by-proxy" [14] approach, inferring occupancy from CO2 concentration 
measurements. 

 VS-occup-3: Represents a standard Passive Infrared (PIR) sensing system, detecting binary occupancy status. 

These templates offer a range of occupancy sensing solutions, balancing factors such as accuracy, cost, and privacy 
considerations. The design tool can select the most appropriate option based on the specific requirements of the project. 
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Figure 2 The mapping result after the function design layer 

5.2.3. Virtual Environmental Sensor Templates 

The module library encompasses various virtual environmental sensors for measuring different environmental aspects. 

 A multimodal sensor capable of measuring both temperature and humidity 
 Two unimodal sensors: one for temperature and another for humidity measurements 

5.2.4. Environmental Sensing Modules 

The design library incorporates multiple environmental sensors to fulfill the prototype design's requirements 
(temperature, humidity, and CO2 measurement). A notable example is Sensing-1, an integrated multimodal Building-
in-Briefcase (BiB) device that can perform multiple sensing functions concurrently. 

5.2.5. Data Analytics Modules 

Our library features eight data analytics modules. Two of these (ML-1 and ML-2) are versatile and applicable to various 
scenarios, while the others are designed for specific use cases, limiting their application to certain virtual device 
templates. 

 ML-1: Implements a Convex Piecewise Linear Classifier (CPLC) [56], which uses a polygonal envelope 
represented by a set of linear constraints. 

 ML-2: Utilizes a neural network, exemplifying nonlinear classifiers. 
 ML-3: Employs a K-Nearest Neighbors (KNN) method, a deterministic approach. 
 ML-4: Uses a Markov chain model, providing a stochastic prediction method. 

ML-3 and ML-4 are commonly used for occupancy prediction. The stochastic nature of ML-4 allows it to output 
probability distributions of occupancy counts, enabling stochastic control algorithms that can better manage system 
uncertainties. In contrast, deterministic methods like ML-3 provide specific future occupancy estimates, making them 
easily integrable into simple deterministic Model Predictive Control (MPC) schemes for occupancy-responsive climate 
control. 

This diverse range of modules allows for flexible and tailored solutions in smart building design, accommodating 
various prediction and control needs. 

The library also incorporates thermal dynamics models of varying complexity, generally categorized into three types: 

 White-box models: These are detailed physical models, such as Energy Plus [57] (represented by ML-7) or 
Modelica [58]. They offer high accuracy when parameters are correctly identified. However, they often 
require significant computational resources and setup time. They can be challenging to implement when 
building documentation is incomplete or when the building environment is subject to frequent changes. 

 Black-box models: These are data-driven, non-physical models. They are computationally efficient but rely 
heavily on the availability and quality of historical data for training to achieve accuracy. ML-2 is an example 
of a black-box model in our library. 
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 Gray-box models: These represent a middle ground between white-box and black-box models, typically 
employing simplified physical models. Examples in our library include: 

 ML-5: An abstraction of the temperature model from [55], using a simple bilinear model based on 
conservation laws. 

 ML-6: A thermal circuit model that uses a resistance-capacitance network to simulate heat transfer between 
different building zones (interiors, walls, windows, etc.). 

Gray-box models often strike a balance, providing reasonable accuracy with lower computational demands compared 
to white-box models. However, they present challenges in parameter estimation. 

This diverse range of thermal models allows designers to choose the most appropriate approach based on the specific 
requirements of the project, available data, computational resources, and desired accuracy. The flexibility to select 
between different model types enables more efficient and tailored solutions for various building scenarios. 

6. Control Modules 

The module platform includes several control modules designed to compute control actions from specified inputs. 
CTRL-1 is responsible for solving an optimization problem to identify the optimal control action. CTRL-2 represents a 
rule-based control module, as proposed in [59], which adjusts room temperature setpoints based on the current time 
and the duration of occupancy or vacancy periods. Similarly, CTRL-3 is another rule-based module but applies a 
different set of rules described in [8] to manage the environment, dynamically altering the flow rate and temperature 
setpoints according to occupancy changes and occupant comfort preferences. 

In the function design layer, VS-env-1, VS-occ-2, and VC-vav-2 have been selected to implement a Model Predictive 
Control (MPC) scheme. For the virtual occupancy sensor VS-occ-2, the design automation tool opts for ML-8, known as 
the “sense-by-proxy” module, due to its superior occupancy detection accuracy compared to other machine learning 
algorithms, as detailed in [14]. For the virtual environment sensor VS-env-1, multiple implementation options exist, 
such as employing the single module Sensing-1, which is a multimodal BiB sensing solution covering all three sensing 
needs or using each sensing function individually with the unimodal sensing modules Sensing-2, Sensing-3, and Sensing-
4. 

For the virtual controller VC-vav-2, CTRL-1 is used because it is the only control module available in our library that fits 
the VC-vav-2 template. The ML-phy module candidates are ML-5 and ML-6, as CTRL-1 necessitates an explicit algebraic 
model to frame an optimization problem for the MPC scheme. For modeling comfort regions, both ML-1 and ML-2 are 
suitable. Although the neural network model (ML-2) might offer a more detailed description of the comfort region 
through nonlinear boundaries, the polygonal comfort region defined by the CPLC (ML-1) is very compatible with 
integration into an MPC scheme. As our optimal control module only supports deterministic MPC formulations, the KNN 
model (ML-3) is a more suitable occupancy predictor than the Markov chain model (ML-4). 

The Design Space Exploration (DSE) in this layer is complex, involving optimization across both a discrete search space, 
for the virtual device templates and modules, and a continuous search space, for the configuration parameters of the 
selected modules. Various factors, including cost and computational performance, must be considered, rendering the 
DSE a multiobjective optimization problem. Advanced search and optimization algorithms [60], [61] from other 
domains can be beneficial for solving this problem. Moreover, simulation techniques can be used during DSE to evaluate 
trade-offs between design instances, as designs at this stage are executable. Based on the above discussions, the design 
shown in Fig. 3 is considered the final mapping result for this layer. 
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Figure 3 The mapping result after the module design layer 

6.1. Implementation Design Layer  

In this phase, the focus is on implementing the designed functions into the building infrastructure, which involves both 
configuring hardware and developing software. 

Any sensors required by the design that are not already present in the building need to be acquired, calibrated, and 
installed in appropriate locations. This process must comply with the constraints outlined in the previous design stages 
as well as aesthetic and legal considerations. For example, the BiB sensors in our setup must measure CO2 for the 
occupancy counting algorithm (SBP), as well as monitor temperature and humidity to predict comfort and room 
dynamics. Therefore, these sensors should be positioned near ventilation outlets and in areas where people frequently 
spend time. This placement ensures that CO2 measurements accurately reflect the cumulative CO2 levels from 
occupants, and that temperature and humidity readings correspond to the conditions most occupants experience. 

The purpose of software synthesis is to produce BOS-executable code for the data analytics and control modules 
identified in the module design phase. The Another Tool for Language Recognition (ANTLR) framework [62] can be 
employed to automatically translate high-level programming languages used for modeling and simulation into a format 
compatible with BOS.  

7. Conclusion and Future Work 

This paper has presented an integrated design flow for smart building functions utilizing a Platform-Based Design (PBD) 
methodology, which facilitates effective Design Space Exploration (DSE) for realizing building functions. A case study 
focused on designing an HVAC function was used to demonstrate the proposed design flow. This methodology can also 
be applied to other building services such as water systems, fire protection, Internet, electrical systems, elevators, and 
security systems, although our examples primarily focused on HVAC and lighting systems. We would like to highlight 
several challenges not addressed in this paper. 

7.1. Populating the Libraries 

An important direction for future work is to further enrich the design libraries with additional resources. This involves 
a) identifying and validating behavioral models that accurately predict component behavior; b) ensuring that library 
components function correctly in various environments; c) defining parameter variations, operational modes, and 
constants for each component; and d) establishing component interfaces and composition rules to enable plug-and-play 
integration of various components. Incorporating resources into the library and maintaining them can be costly. 
Therefore, the selection of resources to include in the libraries must be strategic. A wide range of models for building 
automation has already been developed, from occupancy [63] to HVAC systems [64]. As this design paradigm gains 
traction, vendors will be motivated to populate libraries by creating simulation models of their components. A design 



World Journal of Advanced Research and Reviews, 2024, 23(02), 1213–1234 

1230 

ecosystem in which vendors are continually incentivized, possibly through an intellectual property market, to enhance 
the library with thoroughly vetted models of their components will be crucial for the success of the proposed paradigm. 

7.2. Enhancing DSE  

A significant challenge in the design flow is the difficulty in accurately assessing the impact of design decisions made 
early in the process. For instance, the operational cost of a virtual device, assumed to be a known value in our case study, 
depends not only on its implementation but also on the physical equipment it operates on, making precise estimation 
challenging. We believe that data-driven techniques, such as those discussed in [65], can address this issue, turning 
future design flows into a "collective" effort. Cost and performance models, trained with both simulated data from the 
design environment and operational data from existing buildings, will guide the design flow. In the later stages, the DSE 
process becomes a mixed discrete-continuous optimization problem, requiring the selection of both candidate modules 
and their configuration parameters. Thanks to advancements in optimization techniques, mixed-integer programs can 
now be solved on a large scale using off-the-shelf solvers. However, time-consuming simulation runs are often necessary 
to evaluate a design's performance, which can hinder effective DSE, especially when the design space is vast. Similar 
challenges are present in other CPS design domains, such as aircraft environment control systems [66], aircraft electric 
power systems [23], [67]–[69], and wireless networks [70], [71]. To manage the complexity of the DSE process, an 
iterative DSE framework has been proposed in recent literature [23], [66]–[71]. The key to an efficient search strategy 
lies in the feedback from the candidate evaluation engine, which helps narrow down a large portion of the discrete 
design space based on insights from simulation runs; for a detailed account, refer to Finn et al.'s work [66]. 

7.3. Toward a Holistic Design Flow  

Designing a smart building encompasses not only the implementation of energy-efficient systems like HVAC and lighting 
but also involves the overall design of the building's form, structure, interior, facade, and cultural expression. This paper 
does not delve into these latter aspects. The co-design of cyber, physical, and human elements in a building is likely a 
more complex challenge than what we have discussed; however, we believe the proposed PBD paradigm will be a crucial 
enabler for a comprehensive future design flow. Achieving this vision will require more effective modeling of cyber, 
physical, and human interactions, improved interoperability of design tools, and more robust DSE engines that can 
continuously refine a design based on insights from the design exploration process. Recent advancements in computer-
aided design (CAD) and Building Information Modeling (BIM) technologies have yielded significant results in 
architectural design, such as streamlining the construction process and allowing architects to conduct basic energy 
performance assessments. However, these capabilities alone are inadequate for the design of future smart buildings. A 
major hurdle is the integration of models and design tools from various domains, which limits the ability to consider 
the impact of smart functions on design performance through simulation. An ongoing effort to facilitate model exchange 
and co-simulation is the functional mockup interface (FMI) standard [72]. This standard is particularly appealing as it 
enables the coupling of multiple simulation tools in a co-simulation environment. An example of this approach is found 
in [73], where an HVAC system model is packaged as a functional mockup unit (FMU) and linked to a room model in 
Energy Plus [57], allowing the performance of the composite system to be evaluated through co-simulation.  

7.4. Handling Uncertainties  

Smart buildings operate within a complex interplay of cyber components, dynamic physical elements, and human 
activities, necessitating design and operation that account for various uncertainties. These uncertainties range from 
operational unpredictability and manufacturing variability to model errors. Operational uncertainty involves the 
randomness of the environments in which smart building systems function. For instance, building environments are 
continuously altered by occupant activities, such as heat generation and CO2 emissions, or their interactions with 
windows, blinds, and lighting. Probabilistic modeling often addresses this environmental uncertainty [74]. The 
unpredictable nature of operational conditions poses challenges for design verification. Mosalam et al. [75] recently 
proposed a performance-based engineering method to incorporate uncertainty into building design, where the optimal 
design decision is made by comparing the expected utility of different designs. It is noteworthy that similar challenges 
are encountered in integrated circuit (IC) design, which deals with a vast number of functional states and state 
transitions. There has been significant research in the IC design community on balancing the trade-off between the cost 
and benefit of test generation, and we believe smart building design can benefit from these innovations. 

Manufacturing processes, including the production and assembly of different equipment into a system, also introduce 
variability. Addressing this variability requires accurate modeling of the manufacturing process and ensuring sufficient 
design parameter margins to explicitly account for such variability. Additionally, developing models for various cyber 
and physical components in buildings is a complex task. Current building energy simulation software, such as Energy 
Plus [57], often relies on idealized physical models to calculate thermal loads, system responses, and energy use by 
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solving physics equations. We anticipate that combining data-driven approaches with physics modeling will result in 
more accurate and adaptive models. 

We view the aforementioned challenges as open questions for future research. It is believed that with the emergence of 
an open standard for design libraries, the PBD paradigm will significantly transform the design and operation of smart 
buildings.  
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