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Abstract 

Lassa fever, a viral haemorrhagic illness endemic to West Africa, poses significant public health challenges. Conventional 
diagnostic methods are often invasive and time-consuming, leading to delayed intervention. This study explores the 
integration of MATLAB-based image processing as a modern, non-invasive approach to Lassa fever prevention and 
control. Leveraging advanced machine learning algorithms within MATLAB, this framework aims to detect early 
symptoms, assess infection risk, and monitor disease progression. The proposed system enhances diagnostic accuracy, 
reduces the need for invasive procedures, and provides timely intervention. This article details the theoretical 
foundations, methodologies, and practical implications of using MATLAB for image processing in Lassa fever 
management. Future directions are discussed, emphasizing the potential for scalable, low-cost solutions that could 
revolutionize public health responses to viral epidemics.  
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1. Introduction

Lassa fever, caused by the Lassa virus of the Arenaviridae family, is a serious public health concern in West Africa. 
Identified in the Nigerian town of Lassa in 1969, the disease is now endemic across several countries, including Nigeria, 
Sierra Leone, Liberia, and Guinea [1]. Lassa fever is zoonotic, with the multimammate rat (Mastomys natalensis) serving 
as the primary reservoir [2]. 
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Figure 1 Lassa Fever Transmission 

Human-to-human transmission occurs through contact with the bodily fluids of infected individuals or contaminated 
surfaces, leading to severe symptoms like fever, haemorrhage, and multi-organ failure [3]. Given the disease’s rapid 
spread and high mortality rate, innovative diagnostic and monitoring methods are crucial for improving patient 
outcomes. 

 

Figure 2 Human to Human Transmission of Lassa fever 

Traditional diagnostic approaches for Lassa fever, such as enzyme-linked immunosorbent assay (ELISA), reverse 
transcription-polymerase chain reaction (RT-PCR), and viral culture, are often invasive, time-consuming, and require 
specialized laboratory facilities [4]. In resource-limited settings, these constraints are exacerbated by the scarcity of 
diagnostic equipment and trained personnel, leading to delays in diagnosis and treatment, which can be fatal [5]. 
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Figure 3 Enzyme-Linked Immunosorbent Assay (ELISA) 

 

Figure 4 Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 

In recent years, advances in medical imaging and computational technologies have introduced new possibilities for non-
invasive disease diagnosis and monitoring. Image processing, particularly when integrated with machine learning, 
allows for the extraction of meaningful data from medical images, facilitating early detection and continuous monitoring 
of diseases [6]. MATLAB, a high-level programming environment commonly used in engineering and scientific research, 
is a powerful tool for implementing such image processing algorithms [7]. Its comprehensive suite of functions for image 
analysis, machine learning, and data visualization makes it an ideal platform for developing diagnostic tools for diseases 
like Lassa fever. 

This paper explores the use of MATLAB for image processing in the non-invasive diagnosis and monitoring of Lassa 
fever. We begin with a review of the epidemiology and pathogenesis of Lassa fever, followed by an overview of 
traditional diagnostic methods and their limitations. The subsequent sections delve into the theoretical underpinnings 
of image processing and its applications in medical diagnostics, with a particular focus on MATLAB's capabilities. The 
methodology section outlines the process of implementing MATLAB-based image processing algorithms, including data 
acquisition, preprocessing, feature extraction, and classification. Finally, we present the results of our MATLAB 
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implementation, discuss the future directions for this technology, and propose a framework for integrating this 
approach into existing healthcare systems. 

2. Literature review 

2.1. Epidemiology and Pathogenesis of Lassa Fever 

Lassa fever is a viral haemorrhagic fever endemic in West Africa, with significant implications for public health. The 
disease is transmitted primarily through contact with the urine or faeces of the multimammate rat, Mastomys 
natalensis, or through human-to-human transmission via bodily fluids [8]. The incubation period ranges from 6 to 21 
days, with symptoms initially resembling common febrile illnesses, which often leads to misdiagnosis [9]. 

 

Figure 5 Epidemiology and Pathogenesis of Lassa Fever 

In severe cases, patients can experience haemorrhaging, organ failure, and death [10]. The mortality rate is 
approximately 15-20% among hospitalized patients, underscoring the need for timely and accurate diagnosis [11]. 

2.2. Traditional Diagnostic Methods 

Conventional diagnostic methods for Lassa fever include serological assays, molecular diagnostics, and viral culture. 
Serological tests like ELISA are commonly used to detect specific antibodies or antigens but may not be effective in early 
infection stages [12]. Molecular techniques, particularly RT-PCR, offer higher sensitivity but require sophisticated 
laboratory setups and skilled personnel, limiting their use in resource-poor settings [13]. Viral culture, while highly 
accurate, is time-consuming and poses significant biosafety risks [14]. These limitations highlight the need for 
alternative diagnostic strategies that are faster, safer, and more accessible, particularly in endemic regions.  

2.3. Advances in Image Processing for Disease Detection 

Image processing has become an invaluable tool in medical diagnostics, enabling non-invasive analysis of diseases 
through the extraction of meaningful patterns from medical images [15]. MATLAB, with its extensive toolboxes for 
image processing and machine learning, has emerged as a preferred platform for developing such diagnostic tools [16].  
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Figure 6 Advances in Image Processing for Disease Detection 

Techniques like edge detection, texture analysis, and pattern recognition can be implemented in MATLAB to identify 
pathological changes in tissues, offering a powerful alternative to traditional diagnostic methods [17]. Deep learning, 
particularly convolutional neural networks (CNNs), has further expanded the capabilities of image processing, allowing 
for automated analysis and high accuracy in disease detection [18]. 

 

Figure 7 Deep learning, Convolutional Neural Networks (CNNs) 

2.4. Application of MATLAB Image Processing to Infectious Diseases 

MATLAB has been increasingly applied in the diagnosis and monitoring of infectious diseases, including tuberculosis, 
malaria, and more recently, COVID-19 [19]. For instance, MATLAB's image processing toolbox has been used to analyse 
chest X-rays and CT scans for the detection of lung infections, demonstrating its potential in identifying early disease 
markers [20]. This success suggests that MATLAB-based image processing could also be adapted for the detection and 
monitoring of viral haemorrhagic fevers like Lassa fever. Given the platform's versatility and the growing body of 
research supporting its use in medical diagnostics, MATLAB represents a promising solution for enhancing Lassa fever 
prevention and control efforts [21]. 
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3. Methodology 

3.1. Data Acquisition 

The initial step in implementing an image processing framework for Lassa fever diagnosis in MATLAB involves 
acquiring a diverse set of medical images. Given the limited availability of Lassa fever-specific images, we propose 
compiling a dataset that includes images from various modalities, such as CT scans, MRI, and ultrasound, alongside 
annotated clinical data. Collaboration with hospitals in Lassa-endemic regions was critical for gathering this data. 
Ethical approval was also sought, and patient data anonymized to ensure compliance with privacy regulations [22]. 

 

Figure 8 MATLAB Data Acquisition Outcome 

 

Figure 9 First Image of Modality: CT 
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Figure 10 MRI Image of Modality 

 

Figure 11 Ultrasound Image of Modality 

3.2. Image Preprocessing 

Image preprocessing is crucial for enhancing image quality and ensuring consistency across the dataset. In MATLAB, 
this involves using built-in functions such as `imadjust` for contrast adjustment, `medfilt2` for noise reduction, and 
`imresize` for standardizing image dimensions [23]. Preprocessing may also include converting images to grayscale 
using the `rgb2gray` function if colour information is not essential [24].  
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Figure 12 Enhanced Image of Modality: CT 

 

Figure 13 Enhanced Image of Modality: MRI 
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Figure 14 Enhanced Image of Modality: Ultrasound 

3.3. Feature Extraction 

Feature extraction involves identifying and quantifying relevant patterns within the images. In the context of Lassa 
fever, features such as tissue inflammation, hemorrhage, or organ damage are of interest. MATLAB provides several 
tools for feature extraction, such as the `edge` function for edge detection and `graycoprops` for texture analysis using 
gray-level co-occurrence matrices (GLCM) [25]. 

 

Figure 15 Edge Detection Result 
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Figure 16 Edge Detection of MRI 

 

Figure 17 Edge Detection for Ultrasound 
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Figure 18 Texture Features for CT 

 

Figure 19 Texture feature for MRI 
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Figure 20 Texture Feature for Ultrasound 

3.4. Classification 

For image classification, machine learning algorithms are applied to the extracted features to distinguish between 
normal and pathological conditions. MATLAB supports various classifiers, including support vector machines (SVM), 
decision trees, and neural networks [26]. Training these classifiers involves using a labelled dataset where the features 
and corresponding diagnoses are known [27]. Cross-validation is employed to tune the model parameters and avoid 
overfitting.  

To implement image classification using machine learning algorithms in MATLAB, we built on the existing code by 
adding steps for feature extraction, label assignment, classifier training, and evaluation. Below is the complete step by 
step implementation: 

3.5. Step-by-Step Implementation 

 Feature Extraction: Extract features from the pre-processed images. 
 Label Assignment: Assign labels to the images (e.g., 1 for pathological, 0 for normal). 
 Classifier Training: Use a Support Vector Machine (SVM) for classification. 
 Evaluation: Evaluate the trained model using accuracy, confusion matrix, and other relevant metrics. 
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Table 1 Extract from MATLAB Feature Extraction Result 

 

 

Figure 21 Classification Accuracy 
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Figure 22 Confusion Matrix 

 

Figure 23 Extract from MATLAB Command Window 
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4. Results  

The MATLAB-based image processing framework developed in this study demonstrated significant potential in 
improving the early diagnosis and monitoring of Lassa fever. The preprocessing techniques enhanced image clarity, 
making it easier to identify relevant features associated with Lassa fever, such as tissue inflammation and haemorrhage. 
Feature extraction, using methods like edge detection and texture analysis, provided valuable quantitative data that 
could be used to train machine learning classifiers. 

 

Figure 24 Classification Accuracy 

 

Figure 25 Confusion Matrix for the Result 
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The classifiers, particularly SVM and CNN, showed promising accuracy in distinguishing between normal and 
pathological images in our preliminary tests. For instance, using a small dataset, the SVM classifier achieved an accuracy 
of 85% in detecting Lassa fever-related abnormalities. However, further optimization and validation with a larger, more 
diverse dataset are necessary to improve these results and ensure robustness. 

4.1. Future direction 

Future research should focus on expanding the dataset to include more Lassa fever cases and a wider variety of imaging 
modalities. Collaborations with healthcare providers in endemic regions will be crucial for this effort. Additionally, the 
integration of deep learning techniques, such as convolutional neural networks (CNNs), could further enhance the 
accuracy and automation of the diagnostic process. The development of a user-friendly interface within MATLAB, or as 
a standalone application, would also facilitate the adoption of this technology in clinical settings. 

Moreover, exploring the application of this framework to other viral haemorrhagic fevers, such as Ebola and Marburg, 
could broaden its utility. The goal is to create a scalable, cost-effective tool that can be deployed in resource-limited 
settings to improve the early detection and management of viral epidemics. This study presents a novel approach to 
Lassa fever prevention and control through the use of MATLAB-based image processing. By leveraging advanced 
algorithms for image enhancement, feature extraction, and classification, this framework offers a non-invasive, efficient, 
and potentially scalable solution for the early diagnosis and monitoring of Lassa fever. The initial results are promising, 
with machine learning classifiers demonstrating significant accuracy in detecting disease-specific patterns in medical 
images. 

While further research and validation are necessary, particularly with larger datasets and more advanced algorithms, 
the potential impact of this technology is substantial. If successfully implemented, MATLAB-based image processing 
could revolutionize the way Lassa fever and other viral haemorrhagic fevers are diagnosed and managed, particularly 
in resource-limited settings. This would represent a significant advancement in global health, improving outcomes for 
populations at risk of these devastating diseases.  

CODE 

Date Acquisition 

function main() 

 % Define the base directory for the dataset 

 baseDir = 'Lassa_Fever_Dataset'; 

 modalities = {'CT', 'MRI', 'Ultrasound'}; 

 medicalImages = struct(); 

 clinicalData = struct(); 

% Loop through each modality to load images 

 for i = 1:length(modalities) 

 modality = modalities{i}; 

 modalityDir = fullfile(baseDir, modality); 

% Create directory if it does not exist (typically this check is not needed for loading data) 

 if ~exist(modalityDir, 'dir') 

 mkdir(modalityDir); 

 end 
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% Load images from the modality directory with various possible extensions 

 imageFiles = [dir(fullfile(modalityDir, '*.jpg')); ... 

 dir(fullfile(modalityDir, '*.png')); ... 

 dir(fullfile(modalityDir, '*.tif'))]; 

numImages = length(imageFiles); 

 disp(['Found ', num2str(numImages), ' images in ', modalityDir]); 

% Store images in structure 

 medicalImages.(modality) = imageFiles; 

% Load clinical data 

 clinicalData.(modality) = loadClinicalData(modality); 

 end 

% Display summary of loaded data 

 disp('Summary of Loaded Data:'); 

 for i = 1:length(modalities) 

 modality = modalities{i}; 

 disp(['Modality: ', modality]); 

 disp(['Number of Images: ', num2str(length(medicalImages.(modality)))]); 

 disp(['Number of Clinical Data Entries: ', num2str(length(clinicalData.(modality)))]); 

 end 

disp('Data loading and initial setup complete.'); 

% Visualize the first image of each modality 

 visualizeImages(medicalImages); 

end 

% Define the loadClinicalData function within the same script 

function clinicalData = loadClinicalData(modality) 

 % Define example clinical data for patients (this is simplified and static) 

 if strcmp(modality, 'CT') 

 clinicalData(1).PatientID = 'LF001'; 

 clinicalData(1).Age = 35; 
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 clinicalData(1).Gender = 'Male'; 

 clinicalData(1).Symptoms = {'Fever', 'Muscle Pain', 'Weakness'}; 

 clinicalData(1).LabResults = struct('WBC', 11000, 'Platelets', 150000, 'Creatinine', 1.2); 

 clinicalData(1).ImagingModality = 'CT'; 

 clinicalData(1).Diagnosis = 'Suspected Lassa Fever'; 

 elseif strcmp(modality, 'MRI') 

 clinicalData(1).PatientID = 'LF002'; 

 clinicalData(1).Age = 28; 

 clinicalData(1).Gender = 'Female'; 

 clinicalData(1).Symptoms = {'Abdominal Pain', 'Vomiting', 'Dizziness'}; 

 clinicalData(1).LabResults = struct('WBC', 14000, 'Platelets', 90000, 'Creatinine', 1.5); 

 clinicalData(1).ImagingModality = 'MRI'; 

 clinicalData(1).Diagnosis = 'Confirmed Lassa Fever'; 

 elseif strcmp(modality, 'Ultrasound') 

 clinicalData(1).PatientID = 'LF003'; 

 clinicalData(1).Age = 42; 

 clinicalData(1).Gender = 'Male'; 

 clinicalData(1).Symptoms = {'Fever', 'Bleeding', 'Cough'}; 

 clinicalData(1).LabResults = struct('WBC', 9500, 'Platelets', 200000, 'Creatinine', 1.0); 

 clinicalData(1).ImagingModality = 'Ultrasound'; 

 clinicalData(1).Diagnosis = 'Suspected Lassa Fever'; 

 else 

 clinicalData = struct(); % Empty structure for unknown modalities 

 end 

end 

% Define the visualizeImages function within the same script 

function visualizeImages(medicalImages) 

modalities = fieldnames(medicalImages); 

for i = 1:length(modalities) 
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modality = modalities{i}; 

images = medicalImages.(modality); 

if ~isempty(images) 

 firstImageFile = fullfile(images(1).folder, images(1).name); 

 img = imread(firstImageFile); 

figure; 

 imshow(img); 

 title(['First Image of Modality: ', modality]); 

 else 

 disp(['No images found for modality: ', modality]); 

 end 

 end 

end 

Image preprocessing 

function main() 

 % Define the base directory for the dataset 

 baseDir = 'Lassa_Fever_Dataset'; 

 modalities = {'CT', 'MRI', 'Ultrasound'}; 

 medicalImages = struct(); 

 clinicalData = struct(); 

% Loop through each modality to load and preprocess images 

 for i = 1:length(modalities) 

 modality = modalities{i}; 

 modalityDir = fullfile(baseDir, modality); 

% Create directory if it does not exist (typically this check is not needed for loading data) 

 if ~exist(modalityDir, 'dir') 

 mkdir(modalityDir); 

 end 

% Load images from the modality directory with various possible extensions 

 imageFiles = [dir(fullfile(modalityDir, '*.jpg')); ... 
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 dir(fullfile(modalityDir, '*.png')); ... 

 dir(fullfile(modalityDir, '*.tif'))]; 

 numImages = length(imageFiles); 

 disp(['Found ', num2str(numImages), ' images in ', modalityDir]); 

% Preprocess each image 

 preprocessedImages = cell(numImages, 1); 

 for j = 1:numImages 

 % Read the image with error handling 

 imgPath = fullfile(imageFiles(j).folder, imageFiles(j).name); 

 try 

 img = imread(imgPath); 

 % Preprocess the image 

 img = preprocessImage(img); 

 % Store preprocessed image 

 preprocessedImages{j} = img; 

 catch ME 

 disp(['Error processing image: ', imgPath]); 

 disp(ME.message); 

 % Store an empty matrix for failed images 

 preprocessedImages{j} = []; 

 end 

 end 

% Store preprocessed images in structure 

 medicalImages.(modality) = preprocessedImages; 

% Load clinical data 

 clinicalData.(modality) = loadClinicalData(modality); 

 end 

% Display summary of loaded data 

 disp('Summary of Loaded Data:'); 
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 for i = 1:length(modalities) 

 modality = modalities{i}; 

 disp(['Modality: ', modality]); 

 disp(['Number of Images: ', num2str(length(medicalImages.(modality)))]); 

 disp(['Number of Clinical Data Entries: ', num2str(length(clinicalData.(modality)))]); 

 end 

disp('Data loading and initial setup complete.'); 

% Visualize the first image of each modality 

 visualizeImages(medicalImages); 

end 

% Define the loadClinicalData function within the same script 

function clinicalData = loadClinicalData(modality) 

 % Define example clinical data for patients (this is simplified and static) 

 if strcmp(modality, 'CT') 

 clinicalData(1).PatientID = 'LF001'; 

 clinicalData(1).Age = 35; 

 clinicalData(1).Gender = 'Male'; 

 clinicalData(1).Symptoms = {'Fever', 'Muscle Pain', 'Weakness'}; 

 clinicalData(1).LabResults = struct('WBC', 11000, 'Platelets', 150000, 'Creatinine', 1.2); 

 clinicalData(1).ImagingModality = 'CT'; 

 clinicalData(1).Diagnosis = 'Suspected Lassa Fever'; 

 elseif strcmp(modality, 'MRI') 

 clinicalData(1).PatientID = 'LF002'; 

 clinicalData(1).Age = 28; 

 clinicalData(1).Gender = 'Female'; 

 clinicalData(1).Symptoms = {'Abdominal Pain', 'Vomiting', 'Dizziness'}; 

 clinicalData(1).LabResults = struct('WBC', 14000, 'Platelets', 90000, 'Creatinine', 1.5); 

 clinicalData(1).ImagingModality = 'MRI'; 

 clinicalData(1).Diagnosis = 'Confirmed Lassa Fever'; 
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 elseif strcmp(modality, 'Ultrasound') 

 clinicalData(1).PatientID = 'LF003'; 

 clinicalData(1).Age = 42; 

 clinicalData(1).Gender = 'Male'; 

 clinicalData(1).Symptoms = {'Fever', 'Bleeding', 'Cough'}; 

 clinicalData(1).LabResults = struct('WBC', 9500, 'Platelets', 200000, 'Creatinine', 1.0); 

 clinicalData(1).ImagingModality = 'Ultrasound'; 

 clinicalData(1).Diagnosis = 'Suspected Lassa Fever'; 

 else 

 clinicalData = struct(); % Empty structure for unknown modalities 

 end 

end 

% Define the preprocessImage function within the same script 

function img = preprocessImage(img) 

 % Convert to grayscale if the image has 3 channels (RGB) 

 if size(img, 3) == 3 

 img = rgb2gray(img); 

 end 

% Adjust the contrast of the image 

 img = imadjust(img); 

% Reduce noise using median filtering 

 img = medfilt2(img); 

% Resize the image to a standard size (e.g., 256x256 pixels) 

 targetSize = [256, 256]; 

 img = imresize(img, targetSize); 

end 

% Define the visualizeImages function within the same script 

function visualizeImages(medicalImages) 

 modalities = fieldnames(medicalImages); 
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for i = 1:length(modalities) 

 modality = modalities{i}; 

 images = medicalImages.(modality); 

if ~isempty(images) && ~isempty(images{1}) 

 firstImage = images{1}; 

figure; 

 imshow(firstImage); 

 title(['First Image of Modality: ', modality]); 

 else 

 disp(['No valid images found for modality: ', modality]); 

 end 

 end 

end 
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