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Abstract 

Seed detection and classification play a crucial role in the agriculture domain, and artificial intelligence has been 
increasingly combined with agriculture in various sectors. Manual seed detection and classification are time-consuming 
and less accurate compared to automated methods. Several research works have been conducted on automatic seed 
detection and classification using machine learning and deep learning algorithms. This review examined ten 
experimental research works focusing on seed detection and classification using these algorithms. The approaches, 
contributions, datasets, data preprocessing, algorithms, results, and limitations of each work were reviewed and 
presented. The survey revealed that Convolutional Neural Networks (CNN) are the most frequently chosen algorithms 
for seed classification, with 93% of the reviewed works using CNN for comparing and evaluating their models. Based on 
the in-depth survey, four recommendations are made for consideration in future experimental analyses of seed 
detection and classification. These findings highlight the importance of artificial intelligence in advancing seed detection 
and classification techniques in the agriculture domain. 

Keywords: Seed classification survey; Seed detection review; Review on seed identification; Seed analysis; Review in 
agriculture 

1. Introduction

A seed is the fundamental and crucial component for sustainable agriculture. Moreover, the response of all additional 
factors in the realm of agriculture is heavily contingent upon the caliber of seeds. Accurate identification and 
categorization of seeds are essential for various purposes, including quality control, inventory management, and 
research [1]. However, traditional manual methods for seed detection and classification are time-consuming, labor-
intensive, and prone to human error. These limitations can lead to inconsistencies, reduced efficiency, and potential 
economic losses in the agricultural sector. 

The advent of artificial intelligence (AI) has opened up new possibilities for automating seed detection and classification 
processes. AI techniques, particularly machine learning and deep learning algorithms, have the potential to overcome 
the drawbacks of manual methods and provide more accurate, efficient, and reliable solutions [2] [3]. By leveraging the 
power of AI, researchers and practitioners in the agriculture domain can develop automated systems that can handle 
large volumes of seed data, perform high-throughput processing, and ensure consistency and accuracy in seed 
identification and categorization. 
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Figure 1 Visualization of the benefits of automated seed detection and classification 

The application of AI in seed detection and classification offers several benefits. Firstly, it enables quality control by 
automatically identifying and separating seeds based on their physical characteristics, such as size, shape, and color  [4]. 
This ensures that only high-quality seeds are selected for planting, leading to improved crop yield and quality. Secondly, 
AI-based systems can perform automated counting of seeds, which is crucial for inventory management and production 
planning [5]. Thirdly, AI can assist in germination testing by analyzing seed images and predicting their viability, saving 
time and resources compared to manual testing methods [6]. Furthermore, AI-powered seed detection and 
classification systems can handle high-throughput processing, allowing for the analysis of large quantities of seeds in a 
shorter time frame. This is particularly beneficial for seed companies, research institutions, and agricultural 
organizations dealing with vast amounts of seed data. 

This review aims to provide a comprehensive overview of the current state of research in seed detection and 
classification using AI techniques. By examining ten experimental research works, this review will shed light on the 
various approaches, contributions, datasets, data preprocessing methods, algorithms, results, and limitations of each 
work. The insights gained from this survey will contribute to the advancement of the agriculture domain by highlighting 
the potential of AI in automating seed detection and classification processes. It will also identify areas for future research 
and development, guiding researchers and practitioners in their endeavors to improve seed identification and 
categorization techniques. 

The expected outcome of this survey is to provide a valuable resource for researchers, agricultural professionals, and 
decision-makers in the agriculture domain. By presenting a systematic review of the existing literature, this survey will 
facilitate a better understanding of the current landscape of AI-based seed detection and classification. It will also offer 
recommendations for future experimental analyses, empowering researchers to build upon the existing knowledge and 
develop more robust and efficient AI models for seed identification and categorization. Ultimately, this review aims to 
contribute to the development of advanced AI technologies that can revolutionize seed detection and classification 
processes, leading to improved efficiency, accuracy, and productivity in the agriculture sector. 

2. Motivation

The motivation for this research stems from the critical importance of seed detection and classification in the agriculture 
domain and the need to address the limitations of manual methods. Accurate and efficient seed identification and 
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categorization are crucial for ensuring the quality and productivity of crops, as well as for supporting various 
agricultural processes [7] such as inventory management, research, and seed production. As critical components of 
agricultural management, seed detection and classification impact seed quality, crop yield, and resource utilization. 
Manual methods for these tasks are not only labor-intensive but also prone to errors, making them less viable given the 
scale and diversity of modern agricultural demands [8]. The advent of advanced artificial intelligence technologies, 
especially in the fields of machine learning and deep learning, offers promising solutions to these challenges [9]. These 
technologies can automate seed detection and classification processes, providing faster, more accurate, and scalable 
alternatives to traditional methods [5]. Furthermore, there is a significant need for a systematic review of the existing 
literature to consolidate knowledge, identify gaps, and suggest future research directions. Such a comprehensive 
analysis is essential for guiding researchers and practitioners in understanding the current capabilities and limitations 
of AI in seed classification. Ultimately, this review aims to illuminate how AI-driven approaches can revolutionize seed 
classification, thereby benefiting stakeholders across the seed industry—from farmers to agricultural technologists—
through enhanced decision-making and improved agricultural outcomes. 

3. Working Mechanism 

This survey aims to provide a comprehensive review of ten experimental research papers focusing on seed detection 
and classification using artificial intelligence techniques. The primary objective is to analyze and compare the 
approaches, contributions, datasets, data pre-processing methods, models, results, and limitations presented in each 
study. To achieve this, a systematic approach was employed to identify and select relevant research papers. The 
selection process focused on experimental studies that specifically addressed seed detection and classification using AI 
algorithms (machine learning, deep learning, and computer vision). The selected papers were chosen based on their 
relevance, quality, and potential impact on the field of agriculture. 

Table 1 provides an overview of the titles of the ten papers considered in this survey. These papers represent a diverse 
range of research efforts in the domain of seed detection and classification, showcasing different techniques, datasets, 
and evaluation metrics. The publications span from 2020 to 2023. 

Table 1 Title, Year, Author, and Publisher’s information of ten selected papers 

SL. Author Title Year Publisher 

1 Fu et al. [10] Cultivars identification of oat (Avena sativa L.) seed via multispectral 
imaging analysis. 

2023 Frontiers 

2 Gulzar et al. [11] A Convolution Neural Network-Based Seed Classification System. 2020 MDPI 

3 He et al. [12] Multi-Modal Late Fusion Rice Seed Variety Classification Based on an 
Improved Voting Method. 

2023 MDPI 

4 Kiratiratanapruk 

et al. [13] 

Development of Paddy Rice Seed Classification Process using 
Machine Learning Tech-niques for Automatic Grading Machine. 

2020 Hindawi 

5 Loddo et al. [14] A Novel Deep learning based approach for seed image classification 
and retrieval. 

2021 Elsevier 

6 Rathnayake et al. 
[15] 

Age Classification of Rice Seeds in Japan Using Gradient-Boosting 
and ANFIS Algorithms. 

2023 MDPI 

7 Xu et al. [16] Research on Maize Seed Classification and Recognition Based on 
Machine Vision and Deep Learning. 

2022 MDPI 

8 Peng et al. [17] Automatic monitoring system for seed germination test based on 
deep learning 

2022 Wiley 

9 Zhao et al. [18] Deep-learning-based automatic evaluation of rice seed germination 
rate. 

2022 Wiley 

10 Ouf et al. [19] Leguminous seeds detection based on convolutional neural 
networks: Comparison of Faster R-CNN and YOLOv4 on a small 
custom dataset. 

2023 Elsevier 
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The review process involved a thorough examination of each paper, focusing on key aspects that contribute to the 
understanding and advancement of AI-based seed detection and classification methods. The approaches section of the 
review explored the underlying methodologies and algorithms employed in each study. This included an analysis of the 
specific AI techniques used, such as machine learning algorithms and deep learning architectures. The datasets section 
provided an overview of the data sources and characteristics used in each study. This included information about the 
type of seeds, the number of samples, the imaging modalities, and any specific challenges or limitations associated with 
the datasets. The data pre-processing section delved into the techniques employed to prepare the raw seed data for 
analysis. This encompassed tasks such as image segmentation, feature extraction, data augmentation, and 
normalization. This review examined how each study handled data pre-processing and its impact on the overall 
performance of the seed detection and classification models. The models section focused on the specific AI architectures 
and configurations used in each research paper. This included an analysis of the network structures, hyperparameters, 
and training procedures employed. The results part presented the key findings and performance metrics reported in 
each study, and compared the results across different studies to identify trends and potential areas for improvement. 
Finally, the limitations section discussed the challenges and constraints encountered in each research paper. These 
included issues related to dataset size, data quality, computational resources, or the generalizability of the proposed 
methods to different seed varieties or environmental conditions. This survey also considered potential future directions 
and recommendations for addressing these limitations. 

By conducting a comprehensive review of these ten experimental research papers, this survey aims to provide a holistic 
understanding of the current state-of-the-art in AI-based seed detection and classification. After reviewing these 
studies, this survey can summarize the AI models employed in the referenced papers and recommend the most effective 
algorithms for future research. Additionally, it advises researchers to consider four key aspects in their upcoming work 
on seed detection and classification. 

4. Approaches and Contributions 

This section provides a detailed examination of the approaches and contributions of the ten selected research works on 
AI-based seed detection and classification. The studies surveyed employ a variety of methodologies, ranging from 
traditional machine learning techniques to advanced deep learning architectures, each tailored to address specific 
challenges in seed identification and classification. A predominant trend observed across these works is the reliance on 
Convolutional Neural Networks (CNNs) due to their robust performance in image-based tasks. Furthermore, several 
studies incorporate innovative data preprocessing techniques, such as multispectral imaging and feature fusion, to 
enhance model accuracy and generalizability. These contributions not only demonstrate the evolving capabilities of AI 
in agriculture but also offer valuable insights for optimizing future research efforts in seed detection and classification. 

Fu et al. [10] developed a novel approach for rapid and non-destructive identification of oat cultivars by integrating 
multispectral imaging technology with multivariate data analysis. Their methodology involved capturing high-
resolution images of oat seeds using a multispectral imaging system that recorded data at 19 specific wavelengths 
spanning [20] the visible and near-infrared regions of the electromagnetic spectrum. 

From the multispectral images, they extracted a comprehensive set of morphological features for each individual seed, 
including size, shape, and color parameters. In addition, they obtained detailed spectral reflectance data across the 19 
wavelengths, which provided valuable information about the chemical composition and internal structure of the seeds. 
By combining the morphological and spectral data, they aimed to develop robust models for discriminating between 
different oat cultivars based on the intrinsic properties of their seeds. This innovative approach leverages the power of 
imaging technology to capture a wealth of information about seed characteristics, which can then be analyzed using 
advanced statistical techniques to enable accurate cultivar identification. Overall, this work represents a significant 
advancement in the field of oat cultivar identification, as it offers a rapid, non-destructive, and potentially high-
throughput alternative to traditional methods that rely on time-consuming manual inspection or destructive molecular 
marker analysis. 

Gulzar et al. [11] proposed an efficient model for seed identification and classification based on convolutional neural 
networks (CNN) [21] and the application of symmetry. The model was trained using transfer learning, focusing more 
on validation and testing rather than training from scratch. The authors made several key contributions in this work. 
They conducted a detailed review of the most notable research in the area of seed classification using machine learning 
and deep learning. They re-introduced the problem of seed classification using a pre-trained VGG16 CNN architecture, 
classifying 14 different types of seeds, unlike previous models that focused on only one type of seed. He et al. [12] 
presented a rice variety classification method that performs late fusion of 2D and 3D modalities using an improved 
voting approach. They collected 2D images and 3D point cloud data of eight common rice varieties using a Raytrix light 
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field camera [22]. The authors developed an improved late-fusion method that generates a dynamically changing 
scoring vector based on each model's performance. This vector is used to adjust the influence of individual predictions 
on the final fused result. The collected data was preprocessed and input into modality-specific models to obtain 
predicted probabilities. The scoring vector is then used to calculate a weighted probability from the different models, 
with the highest probability class being selected as the final predicted variety. The key contribution is the improved 
voting method for late fusion, which the authors state is more robust compared to other multimodal fusion approaches, 
as it is less impacted by single poorly performing models and avoids interference from excessive model homogeneity 
or suboptimal individual model performance. 

Kiratiratanapruk et al. [13] presented a study that utilized machine vision technology to classify 14 Oryza sativa rice 
varieties. The authors developed a rice varieties classification process consisting of object orientation to align seed 
images, image screening for outlier/irregular/abnormal or tilted seeds, feature extraction for retrieving physical seed 
properties, and rice varieties classification using machine learning techniques. The authors' key contributions include 
collecting a large dataset of over 3,500 seed samples for each of the 14 rice varieties, totaling close to 50,000 images, to 
cover the diversity within each rice species. They also developed preprocessing methods for seed orientation and 
quality screening to prepare high-quality input data for the classification models. Furthermore, they compared the 
performance of traditional machine learning methods with deep learning techniques using pretrained models for rice 
variety classification. Loddo et al. [14] presented a novel deep learning approach for seed image classification and 
retrieval. They proposed SeedNet, a new CNN architecture, and compared its performance with several state-of-the-art 
CNNs on two seed datasets. The authors also compared the deep learning methods with traditional machine learning 
approaches using handcrafted features. Additionally, they introduced two new preprocessed seed datasets containing 
single seed images. Their contributions include proposing the accurate and efficient SeedNet CNN, extensively 
comparing it with ten existing CNNs, comparing CNNs with four classical machine learning techniques, and creating two 
new seed image datasets through preprocessing. The study aimed to find the best performing model architecture and 
training options for seed classification and retrieval tasks. 

Rathnayake et al. [15] presented a novel machine learning approach for classifying Japanese rice seeds based on their 
variety and harvest age. They developed a new rice seed dataset containing six rice varieties with three age variations, 
which is the only dataset labeled by harvested age to the authors' knowledge. The authors investigated various features 
extracted from RGB images using six feature descriptors to accurately classify the seeds. They proposed a novel machine 
learning model combining gradient-boosting algorithms [23] with a Cascaded-ANFIS structure for cost-effective and 
efficient identification of rice seed variety and age. The proposed algorithm's performance was compared with several 
other feature-based machine learning algorithms. This study aims to provide a solution for replacing complex, power-
consuming black box algorithms with a more efficient and effective method for identifying seed variety and age. Xu et 
al. [16] presented a non-destructive method for automatic identification and classification of different varieties of maize 
seeds from images using machine vision combined with deep learning. They applied a CNN architecture called P-ResNet 
for varietal detection. The authors established a seed dataset and divided it into training and validation sets in an 8:2 
ratio for experiments. They evaluated and compared the classification performance of various CNN models and used 
visualization techniques to validate the results. Xu et al. hypothesized that transfer learning can help save model training 
time by acquiring knowledge learned in other settings for similar tasks, and that CNN models can automatically extract 
more depth features from images compared to manual feature extraction methods, thus improving classification 
performance. The main contributions of this work include proposing the P-ResNet architecture for maize seed 
classification, demonstrating the effectiveness of transfer learning and data augmentation for this task. 

Peng et al. [17] present an innovative automatic monitoring system for seed germination tests, addressing the 
limitations of traditional methods that rely on manual labor and expensive equipment. Their system combines hardware 
modifications to germination thermostats with a multifunctional software system and a novel deep learning algorithm, 
DDST-CenterNet, designed for dense small target detection. The authors highlight the system's cost-effectiveness, 
versatility, and independence from environmental factors such as seed background and lighting conditions. The DDST-
CenterNet algorithm demonstrates high accuracy and stability in detecting and classifying seeds, even as seed density 
increases. Notably, the algorithm's computational efficiency allows for real-time detection at frame rates of at least 
10fps. This work represents a significant advancement in seed germination testing, offering a practical and scalable 
solution that could greatly improve breeding efficiency and reduce reliance on specialized technicians. The system's 
potential for widespread adoption in agricultural research and industry is evident. Zhao et al. [18] presented a deep 
learning-based method called YOLO-r for automatically evaluating the germination rate of rice seeds. They developed 
YOLO-r by improving the YOLOv5 object detection model to better identify small, densely distributed rice seeds. The 
authors made several contributions to enhance the performance of YOLOv5. They divided the input images into 
overlapping sub-images to maintain resolution while ensuring efficient processing. The Transformer encoder was 
incorporated into the backbone and head networks to accurately predict densely distributed small objects using the 
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self-attention mechanism. Additionally, a small target detection layer was added to improve the detection of small-sized 
rice seeds. Finally, the authors adopted the CDIoU loss function to accelerate the convergence of the predicted bounding 
box loss and improve network performance. 

Ouf [19] presented a comparative study of two deep learning-based models, Faster R-CNN and YOLOv4, for the detection 
and identification of 11 different types of leguminous seeds. The author manually collected and annotated a diverse 
dataset of 828 seed images, considering variations in background, crowdedness, shooting angle, and seed combinations. 
Transfer learning was employed to optimize the models, with Inceptionv2 and CSPDarknet53 serving as the backbone 
feature extractors for Faster R-CNN and YOLOv4, respectively. The study aimed to address the challenges of detecting 
small, similarly colored seeds in complex scenarios, with a focus on improving accuracy and runtime. Ouf's work 
contributes to the field of agricultural object detection by providing a comprehensive evaluation of two state-of-the-art 
models on a custom leguminous seed dataset, highlighting the potential of YOLOv4 for accurate and efficient seed 
detection in real-world applications. 

5. Dataset 

The selection and preparation of appropriate datasets are crucial for developing and evaluating effective seed 
classification models. This section provides an overview of the datasets used in recent studies on seed classification, 
highlighting their composition, acquisition methods, and preparation techniques. Researchers have employed a wide 
variety of datasets, ranging from single-species collections to diverse multi-species compilations. These datasets 
typically include high-quality images of seeds, often captured under controlled conditions to ensure consistency. Some 
studies have also incorporated 3D data or images from multiple angles to enhance the robustness of their models. 

Fu et al. [10] used a dataset consisting of seeds from 16 oat (Avena sativa L.) cultivars, namely Blade, Deon, Jerry, Kona, 
Longyan1, Longyan2, Longyan3, Longyan4, Brave1, Morgan, Monica, Tanke, Youmu1, Baiyan7, Dingyan2, and Quebec. 
For each cultivar, they collected 200 seeds, which were carefully selected to be free from any visible defects or diseases. 
The seeds of Dingyan2, Baiyan7, and Quebec were sourced from the Academy of Agricultural Science, Dingxi Gansu 
Province, while the remaining cultivars were obtained from Beijing Best Grass Industry Co., Ltd. [24] To ensure the 
robustness and reliability of their models, Fu et al. randomly divided the seeds of each cultivar into a training set (140 
seeds, 70% of the total samples) and an independent testing set (60 seeds, 30% of the total samples). 

Gulzar et al. [11] prepared a dataset consisting of images from 14 different types of commonly known seeds: black-eyed 
pea, black pepper, chickpea, coriander, corn, cumin, fennel, fenugreek, flax, kidney beans, mustard, onion, pumpkin, and 
sunflower. Around 100 grams of each seed type was used for experimentation. A smartphone with a 12-megapixel 
camera was used to capture the digital images of the seeds from a distance of one foot during the day to avoid texture 
changes and shadow effects. A white ring light and a tripod mobile stand were used to ensure consistent l ighting 
conditions. Approximately 200 images were captured for each seed type to maintain a balanced dataset and prevent 
biased results. The captured images were then rescaled to 224 × 224 × 3, labeled, and arranged in separate folders to 
prepare the dataset for training the CNN model. In [12] study, He et al. used a dataset consisting of eight common rice 
varieties in China: Nanjing9108, Zhenghan10, Hannuo35, Yuanhan35, Huanghuazhan, Hyou518, Liannuo13, and Liusha. 
For each variety, they collected both 2D images and 3D point cloud data using a Raytrix light field camera [22]. The 
dataset was carefully prepared by manually screening and cleaning the rice seeds to avoid irregularities such as 
attached impurities and gaps that could affect the classification results. The selected samples were stored in a dry, low-
temperature, and airtight environment to prevent any influence from external factors. In total, the dataset comprised 
3,194 samples, with each seed having a corresponding 2D picture and 3D point cloud of both front and back sides. The 
dataset was then divided into a training set and a test set at a ratio of 8:2, resulting in 2,560 samples in the training set 
and 634 samples in the test set. 

Kiratiratanapruk et al. [13] utilized a private dataset consisting of 14 popular and economically potential Thai rice 
varieties provided by the Thailand Rice Department. The rice varieties were categorized into three groups based on 
their planting areas to analyze ambiguity among varieties. The first group (GrpI) contained 7 varieties: CNT1, KDML105, 
PTT, RD15, RD33, RD51, and RD6. The second group (GrpII) included 7 varieties: PSL2, RD31, RD41, RD47, RD49, RD57, 
and SPR1. The third group (GrpAll) was a combination of the first two groups, comprising all 14 varieties. Each variety 
had more than 3,500 seed samples photographed using a flatbed scanner with a special box tray at 600 DPI resolution, 
resulting in a total of nearly 50,000 images for the entire dataset. The seed samples were collected from various 
provinces in Thailand to cover different characteristics influenced by diverse producing environments and areas. Loddo 
et al. [14] utilized two datasets in their research: the Canadian dataset and a local dataset. The Canadian dataset, publicly 
available and (last updated in February 2019), contains 587 seed images of different sizes, organized into families 
belonging to the Magnoliophyta phylum. For their experiments, the authors selected 215 images from the six most 
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represented families: Amaranthaceae, Apiaceae, Asteraceae, Brassicaceae, Plantaginaceae, and Solanaceae. The local 
dataset consists of 3,386 seed samples from 120 plant species of the Fabaceae family, obtained from the Germplasm 
Bank of Sardinia (BG-SAR), University of Cagliari, Italy. The authors selected 1,988 seeds from the 23 most numerous 
species for their experiments. Both datasets underwent a preprocessing step to create single seed images, which 
involved removing scale indicators and creating binary seed masks for the Canadian dataset, and utilizing the blue 
background for automatic thresholding in the local dataset. 

Rathnayake et al. [15] constructed a novel rice seed dataset. The dataset consists of six Japanese rice varieties: 
Akitakomachi, Fusaotome, Hatsuboshi, Koshihikari, Okiniiri, and Yang DAO-8. Each variety includes samples from three 
different harvest years (2012, 2016, and 2020), except for Okiniiri, which has samples from 2012 and 2016, and Yang 
DAO-8, which has samples from 2012 and 2020. The dataset was created using a conveyor belt system that 
automatically acquires seed images with a smartphone camera equipped with a macro lens, allowing for the capture of 
detailed surface features and real-time flexibility. The images were preprocessed by removing backgrounds and 
segmenting individual seeds. In total, the dataset consists of 16 classes, with the number of samples per class ranging 
from 261 to 509. The complete dataset, which was divided into training and testing sets at a ratio of 7:3, is publicly 
available on the Kaggle. 

Xu et al. [16] used a dataset consisting of 8080 maize seeds from five common varieties in China, namely BaoQiu, 
KouXian, LiaoGe, ShanCu, and XinNuo. The seeds were provided by the National Seed Breeding Base in Hainan, China 
[25] , and were selected and certified by experts. The dataset was manually cleaned to remove impurities and dust. The 
number of seeds varied for each variety due to the influence of seed storage conditions, with 1710 BaoQiu, 1800 
KouXian, 570 LiaoGe, 2000 ShanCu, and 2000 XinNuo seeds. The seeds were placed individually on a black background 
for image acquisition. All images were captured under the same environment, with a camera resolution of 3384 × 2708 
pixels. The acquired images were then segmented into individual seed images of 350 × 350 pixels and saved in PNG 
format. The entire dataset was randomly divided into a training set (80%, 6464 seeds) and a validation set (20%, 1616 
seeds) for the experiments. 

Zhao et al. [18] collected a total of 21,429 rice seeds to construct the dataset for their research. The seeds were obtained 
from nine populations with different phenotypic characteristics, varying considerably in length, shape, and color. The 
collected seeds were divided into two datasets: RiceSeed1 and RiceSeed2. RiceSeed1, consisting of 600 images, was 
primarily used for training the YOLO-r model. This dataset was split into a training set and a test set in an 8:2 ratio, with 
the training set containing 480 images and the test set containing 120 images. Each image in RiceSeed1 was manually 
labeled using the labelImg tool [26], with germinated seeds marked as 'yes' and ungerminated seeds marked as 'no'. 
RiceSeed2, comprising 1,211 images, was used to evaluate the performance of the trained YOLO-r model. The images in 
both datasets contained seeds of different sizes, shapes, and colors, as well as impurities such as branch stalks, broken 
leaves, and rice awns, with the seeds randomly distributed within the images. 

Ouf [19] manually collected and annotated a diverse dataset of leguminous seed images for this study. The dataset 
consists of 828 images, capturing 11 different types of leguminous seeds: Glycine max, Lens culinaris-dark, Lens 
culinaris-yellow, Lupinus albus, Medicago sativa, Phaseolus vulgaris-pink, Phaseolus vulgaris-red, Phaseolus vulgaris-
white, Trifolium alexandrinum, Trigonella foenun graecum, and Vicia faba. The images were taken using two different 
devices (a SAMSUNG smartphone camera and a Canon digital camera) and feature variations in background (white A4 
paper, black pad, dark blue pad, dark green pad, and green pad), seed crowdedness (1 to 50 seeds per image), shooting 
angles, and heights. The dataset also includes different combinations and arrangements of the 11 seed types. In total, 
the 828 images contain 9,801 seed objects (labels). The dataset was randomly split into three subsets: train (80%), 
validation (10%), and test (10%) for model development and evaluation. 

Table 2 Summary of Datasets Used of these 10 research 

Author Dataset Description Samples Details 

Fu et al. Dataset of seeds from 16 oat cultivars, divided into 
training and testing sets. 

3200 seeds Training (70%), Testing 

(30%) 

Gulzar et al. Images of 14 different seed types captured under 
consistent lighting conditions. 

2800 
images 

Training (80%), Testing 

(20%) 

He et al. Dataset of 8 common rice varieties in China, 
including 2D and 3D data. 

3194 
samples 

Training (80%), Testing 

(20%) 

https://paperpile.com/c/nlPvvo/N9Ib
https://paperpile.com/c/nlPvvo/DHFo
https://paperpile.com/c/nlPvvo/d7UT
https://paperpile.com/c/nlPvvo/XLIS
https://paperpile.com/c/nlPvvo/gwQK
https://paperpile.com/c/nlPvvo/zxLG
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Kiratiratanapruk et 
al. 

Images of 14 Thai rice varieties from various 
planting areas. 

50,000 
images 

Training (70%), Testing 

(30%) 

Loddo et al. Two datasets: Canadian and local from BG-SAR, 
involving multiple seed families. 

5581 
images 

Not specified 

Rathnayake et al.  Novel dataset of Japanese rice varieties with samples 
from different years. 

5282 
images 

Training (70%), Testing 

(30%) 

Xu et al. Dataset of 8080 maize seeds from five varieties in 
China. 

8080 seeds Training (80%), 
Validation (20%) 

Yasam et al. Images of three seed classes, each with a sequence of 
images. 

23,797 
images 

Not specified 

Zhao et al. Two datasets of rice seeds with detailed 
classifications and varying conditions. 

21,429 
seeds 

Training (80%), Testing 

(20%) for RiceSeed1 

Ouf et al. Diverse dataset of leguminous seed images, 
manually collected and annotated. 

828 images Train (80%), Validation 

(10%), Test (10%) 

6. Data Pre-Processing 

Data preprocessing is a crucial step in computer vision and machine learning tasks involving image data, as it prepares 
the raw data for effective analysis and modeling. In the context of seed classification and germination studies, various 
researchers have employed diverse preprocessing techniques to enhance the quality of the input images, extract 
relevant features, and ensure the optimal performance of their models. The following section outlines the preprocessing 
approaches adopted by these ten studies, highlighting the importance of data preparation for accurate and reliable 
results. 

Fu et al. [10] first used a normalized canonical discriminant analysis (nCDA) in the VideometerLab software to segment 
the acquired multispectral images and create image masks that isolated the oat seeds from the background and non-
seed pixels. This step ensured that only the relevant seed pixels were considered for further analysis. Subsequently, 
they extracted the morphological features (such as area, length, width, shape, and color parameters) and spectral 
reflectance data for each individual seed from the pre-processed images. 

Gulzar et al. [11] applied several data pre-processing techniques in their work. They used the image augmentation 
technique to artificially produce more training images using the ImageDataGenerator API from the Keras library. The 
augmented images were generated by randomly rotating, zooming, adjusting height, and shifting width of the original 
images. This process helped expose the system to a wide variety of variations in the dataset. The augmented images 
were then rescaled to a consistent size of 224 × 224 × 3 to ensure compatibility with the proposed model. Additionally, 
the authors employed a dropout technique to minimize overfitting and improve the model's validation performance. 

In [12] work, the dataset was carefully prepared by manually screening and cleaning the rice seeds to avoid 
irregularities such as attached impurities and gaps that could affect the classification results. The selected samples were 
stored in a dry, low-temperature, and airtight environment to prevent any influence from external factors. In total, the 
dataset comprised 3,194 samples, with each seed having a corresponding 2D picture and 3D point cloud of both front 
and back sides. The dataset was then divided into a training set and a test set at a ratio of 8:2, resulting in 2,560 samples 
in the training set and 634 samples in the test set. 

Kiratiratanapruk et al. [13] employed a preprocessing method consisting of two main steps: (1) seed orientation and 
(2) seed quality screening. In the seed orientation step, the authors developed a method to examine and rotate the seed 
body into the horizontal axis direction, ensuring that all seeds' head-and-tail directions were aligned uniformly. This 
alignment simplified the feature extraction and data analysis processes. The seed quality screening step involved 
detecting and discarding outlier seeds (seeds with different shapes from the standard) and tilted seeds (seeds not 
properly aligned horizontally during scanning). The authors utilized the DBSCAN clustering technique to identify outlier 
seeds and the SVM technique with shape features to classify tilted seeds. These preprocessing steps aimed to ensure 
high-quality input data for the subsequent classification models. 

 

https://paperpile.com/c/nlPvvo/UcbP
https://paperpile.com/c/nlPvvo/57Aa
https://paperpile.com/c/nlPvvo/S3av
https://paperpile.com/c/nlPvvo/3fdc
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Loddo et al. [14] applied preprocessing steps to create single seed images for both datasets. For the Canadian dataset, 
they first removed the scale indicators present in the images. Then, they created binary seed masks by identifying the 
background's intensity values using the image histogram and excluding them based on a 5% range. The masks were 
used to identify bounding boxes for each seed, and the main seed image was extracted by replacing non-mask pixel 
values with the background pixel value. For the local dataset, the authors utilized the blue background to isolate the 
seeds using automatic thresholding on the blue channel of the RGB images. As the seeds were well-spaced during 
acquisition, the bounding box of each region was used to create a single image for every seed. Some species were 
discarded due to low sharpness and small seed size. Xu et al. [16] employed several data pre-processing techniques in 
their work. First, the acquired high-resolution images containing multiple seeds were segmented into individual seed 
images of 350 × 350 pixels. Next, data augmentation was applied to the training images, which were randomly rotated, 
flipped horizontally and vertically, and normalized to extend the dataset and improve the model's classification 
precision and robustness. Lastly, the entire dataset was randomly divided into a training set (80%, 6464 seeds) and a 
validation set (20%, 1616 seeds) for the experiments. These pre-processing steps were crucial for preparing the dataset 
to be used effectively in the convolutional neural network (CNN) models for maize seed classification. 

Zhao et al. [18] applied several preprocessing techniques to the images in the dataset. First, they adjusted the contrast 
and brightness of the images using gamma correction and log transformation. Second, Gaussian noise was added to the 
RGB channels of the images to simulate the noise introduced during the imaging and recording processes. Finally, the 
images were randomly rotated within an angle range from 0° to 360°. The authors noted that the rotation operation 
might cause some pixels to be rotated out of the image frame, leaving behind empty pixels within the frame. These 
empty pixels were filled with zero values. Finally, In the data pre-processing stage, Ouf [19] resized all the images in the 
dataset to 416 × 416 pixels to ensure compatibility with the Faster R-CNN and YOLOv4 models, avoiding memory 
constraints, low speed, and low accuracy issues. The image annotations, generated using the LabelImg tool, were saved 
in both .txt format (for YOLO) and .xml format (for PASCAL VOC dataset, which can be easily converted to TFRecords). 
For the YOLOv4 model, the images and annotations were directly input into the model using the Darknet deep learning 
framework. For the Faster R-CNN model, which utilizes the TensorFlow deep learning framework, the .xml annotations 
were converted into the TFRecord data type before being fed into the model. 

The data preprocessing techniques discussed in this section underscore the significance of meticulous data preparation 
for achieving optimal performance in seed classification and germination studies. Researchers have employed a wide 
range of preprocessing methods, including image segmentation, contrast enhancement, noise removal, data 
augmentation, and image resizing, among others. These techniques aim to enhance image quality, extract relevant 
features, and ensure compatibility with the employed models. For future studies, a recommended preprocessing 
pipeline could involve a combination of techniques, such as nCDA or clustering methods like DBSCAN to isolate 
individual seeds from the background. This can be followed by image augmentation techniques (e.g., rotation, flipping, 
zooming) to increase the diversity of the training data and improve model generalization. Additionally, contrast 
enhancement methods like CLAHE can be applied to improve image quality, and noise removal techniques like median 
filtering can help mitigate the effects of noise introduced during image acquisition. Finally, image resizing to a consistent 
size compatible with the chosen model architecture can ensure efficient processing and prevent memory constraints. 

7. Algorithms and Results 

This section delves into presenting diverse methods, ranging from traditional machine learning techniques to 
sophisticated deep learning models, in these ten works. Here, I review the significant contributions and performance 
outcomes of these research studies, highlighting their effectiveness in improving seed classification accuracy and 
efficiency. 

Table 3 Summary of Algorithms and Results from ten Studies on Seed Classification 

SL. Authors Algorithm(s) Used Own  

Architecture? 

Results 

1 Fu et al. PCA, LDA, SVM No SVM: 92.71% accuracy 

2 Gulzar et al. Modified VGG16 Yes Modified VGG16: 99% validation 
accuracy 

3 He et al. SVM, kNN, CNN, MobileNet, PointNet No Improved voting method: 97.4% 
average accuracy 

https://paperpile.com/c/nlPvvo/fM7H
https://paperpile.com/c/nlPvvo/DHFo
https://paperpile.com/c/nlPvvo/XLIS
https://paperpile.com/c/nlPvvo/zxLG
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4 Kiratiratanapr 
k 

et al. 

LR, LDA, k-NN, SVM, VGG16, VGG19, 
Xception, InceptionV3, 
InceptionResNetV2 

No InceptionResNetV2: 95.15% 
highest accuracy 

5 Loddo et al. 

 

SeedNet, Comparison with other 
CNNs and traditional ML 

Yes SeedNet: 97.47% accuracy 

6 Rathnayake et 

al. 

Gradient-boosting algorithms 
(XGBoost, CatBoost, Light-GBM) with 
Cascaded-ANFIS 

Yes Cascaded-ANFIS: 76.97% 
accuracy for variety 
classification 

7 Xu et al. P-ResNet, Comparison with other 
CNNs 

Yes P-ResNet: 99.70% highest 
classification accuracy 

8 Yasam et al. MLRCM-SG (CLAHE, SIFT, RF, DT) No RF classifier: 92.65% accuracy 

9 Zhao et al. YOLO-r (includes image partitioning, 
Transformer encoder, small target 
detection layer, CDIoU loss) 

Yes YOLO-r: 95.39% mAP 

10 Ouf et al. Faster R-CNN with Inceptionv2, 
YOLOv4 with CSPDark-net53 

No YOLOv4: 98.52% mAP, 47.2 ms 
inference speed 

Fu et al. [10] applied PCA, LDA, and SVM algorithms to the morphological, spectral, and combined datasets for classifying 
oat cultivars. PCA provided some grouping ability but could not clearly distinguish all 16 cultivars. LDA achieved 89.69% 
accuracy on the testing set using combined data, while SVM attained 92.71% accuracy. The results demonstrated the 
effectiveness of integrating multispectral imaging with multivariate analysis for rapid, non-destructive oat cultivar 
identification based on seed characteristics, providing a potential alternative to manual inspection and destructive 
molecular marker-based methods. Gulzar et al. [11] implemented a modified VGG16 architecture with five additional 
layers for seed classification. The model was trained using transfer learning and fine-tuned with an adjustable learning 
rate and model checkpointing. The training accuracy reached 99.6%, and the validation accuracy stabilized at around 
99% after 40 iterations. The proposed model outperformed traditional machine learning algorithms such as KNN, 
decision trees, and random forests. The test results on unseen real-world data showed an accuracy of 99%, with minor 
misclassifications due to similarities in seed textures. The proposed model's performance was encouraging for 
industrial applications in seed sorting and packaging. 

He et al. [12] used SVM, kNN, CNN, and MobileNet for 2D image classification, and PointNet for 3D point cloud 
classification. They proposed an improved voting method for late fusion, which generates a scoring vector based on 
each model's performance. The predicted probabilities from each model were weighted using the scoring vector, and 
the class with the highest probability was selected as the final prediction. The improved voting method achieved an 
average accuracy of 97.4%, outperforming individual models by 4.9% to 18.1%. The method significantly improved the 
identification accuracy of Hannuo35 and Yuanhan35 rice varieties compared to using only 2D models. Kiratiratanapruk 
et al. [13] applied four traditional machine learning methods (LR, LDA, k-NN, and SVM) and five deep learning models 
(VGG16, VGG19, Xception, InceptionV3, and InceptionResNetV2) for rice variety classification. The best accuracy 
achieved by the SVM method was 90.61%, 82.71%, and 83.9% in subgroups 1, 2, and the collective group, respectively. 
The deep learning techniques outperformed traditional methods, with InceptionResNetV2 achieving the highest 
accuracy at 95.15%. The authors also demonstrated that their seed orientation method improved classification accuracy 
by 1.3% in the deep learning experiment, and seed quality screening enhanced accuracy by 2-3% in statistical methods. 

Loddo et al. [14] proposed SeedNet, a CNN architecture for seed classification and retrieval, and compared its 
performance with ten state-of-the-art CNNs and four traditional machine learning methods using handcrafted features. 
SeedNet outperformed all other methods in both classification and retrieval tasks on the Canadian and local datasets, 
achieving accuracies of 95.24% and 97.47%, respectively. The study also found that CNN descriptors generally 
outperformed handcrafted descriptors in both tasks. The authors concluded that SeedNet is robust, efficient, and 
accurate for seed classification and retrieval, and deep learning techniques have substantial potential in this domain. 
Rathnayake et al. [15] proposed a novel machine learning algorithm combining gradient-boosting algorithms (XGBoost, 
CatBoost, and LightGBM) with a Cascaded-ANFIS structure for classifying rice seed varieties and ages. The proposed 
algorithm outperformed 13 other feature-based machine learning algorithms in terms of accuracy, precision, recall, and 
F1-score for both variety and age classification tasks. The algorithm achieved an accuracy of 0.7697 for variety 
classification and accuracies ranging from 0.7551 to 0.9512 for age classification of individual varieties. 

https://paperpile.com/c/nlPvvo/UcbP
https://paperpile.com/c/nlPvvo/57Aa
https://paperpile.com/c/nlPvvo/S3av
https://paperpile.com/c/nlPvvo/3fdc
https://paperpile.com/c/nlPvvo/fM7H
https://paperpile.com/c/nlPvvo/N9Ib
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Xu et al. [16] proposed an improved convolutional neural network (CNN) architecture called P-ResNet and compared 
its performance with other popular CNN models, such as AlexNet, VGGNet, GoogLeNet, MobileNet, DenseNet, ShuffleNet, 
and EfficientNet. The authors employed transfer learning to train the models and evaluated their classification accuracy 
using the maize seed dataset. The P-ResNet model achieved the highest classification accuracy of 99.70%, 
outperforming other CNN models. The results demonstrate the effectiveness of the proposed P-ResNet architecture, 
transfer learning, and data augmentation techniques for the classification of maize seeds using machine vision and deep 
learning. Zhao et al. [18] proposed YOLO-r, an improved version of YOLOv5, for detecting the germination rate of rice 
seeds. They incorporated image partitioning, the Transformer encoder, a small target detection layer, and the CDIoU 
loss function to enhance the model's performance. The experimental results showed that YOLO-r achieved a mean 
average precision (mAP) of 0.9539, outperforming 12 other models. The average detection time per image was 0.011 
seconds, meeting real-time requirements. The evaluation of YOLO-r on the RiceSeed2 dataset revealed that the mean 
absolute error of the germination rate was less than 0.1. 

Ouf [19] employed Faster R-CNN with Inceptionv2 backbone and YOLOv4 with CSPDarknet53 backbone for leguminous 
seed detection. YOLOv4 utilized mosaic data augmentation to improve small seed detection. The models were evaluated 
using mean Average Precision (mAP) and inference speed. YOLOv4 outperformed Faster R-CNN with a mAP of 98.52% 
compared to 84.56%, and an inference speed of 47.2 ms versus 53.1 ms. YOLOv4 demonstrated superior accuracy and 
runtime, with an error rate below 2% and a running time under 2 seconds, making it an effective tool for leguminous 
seed detection in complex scenarios. 

These studies demonstrate the significant potential of CNN and custom architectures for seed classification and 
identification. Particularly, works such as those by Gulzar et al. [11] and Loddo et al. [14], which implemented their own 
modified CNN architectures, have shown superior performance in terms of accuracy and efficiency compared to 
traditional machine learning methods and standard CNN models. These custom models, tailored specifically to the 
intricacies of seed imagery, capitalize on the unique features of seed morphology better than generic algorithms. 
Therefore, it is recommended for future research in seed classification to consider developing and employing bespoke 
CNN architectures. This approach not only enhances classification accuracy but also optimizes the models to handle the 
specific challenges posed by different seed types and imaging conditions, providing a robust solution for both academic 
research and practical applications in agriculture. 

Limitations 

This section outlines the limitations identified in these ten studies and recommends potential solutions to enhance 
model performance and applicability. Each cited work's specific challenges are discussed, with suggestions aimed at 
improving dataset diversity, model generalization, and evaluation metrics. 

Table 4 Summary of Limitations and Recommended Solutions for ten Studies 

Work Limitation Recommended Solution 

Loddo et al. Model limited to specific datasets with 
small number of classes and samples. 

Expand dataset diversity and size; incorporate 
additional evaluation metrics like computational 
efficiency. 

Gulzar et al. Dataset limited to 14 seed types, 
potentially causing overfitting. 

Increase dataset size and diversity; compare with 
state-of-the-art models. 

Kiratiratanaprk 
et al. 

Focus on Thai rice broader applicability. 

cultivars, limiting 

Test model on diverse crop types and 
environmental conditions; explore data 
augmentation and transfer learning. 

Fu et al. Study limited to 16 oat cultivars, with no 
exploration of environmental factors. 

Include diverse oat cultivars and study the impact of 
environmental factors on seed morphology. 

Ouf et al. Focus on leguminous seeds with a small 
dataset, limiting generalization. 

Increase dataset size and diversity; explore 
environmental impacts on model performance. 

He et al. Limited scope to eight Chinese rice 
varieties.  

Expand study to include diverse rice varieties from 
various regions. 

Xu et al. Limited to five maize varieties; does not 
consider seed age or storage conditions. 

Include diverse maize varieties and study impact of 
seed age and storage conditions on classification. 

https://paperpile.com/c/nlPvvo/DHFo
https://paperpile.com/c/nlPvvo/XLIS
https://paperpile.com/c/nlPvvo/zxLG
https://paperpile.com/c/nlPvvo/57Aa
https://paperpile.com/c/nlPvvo/fM7H
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Zhao et al. Focused on rice seeds from Shanghai, 
which may not represent other regions. 

Expand dataset to include diverse rice cultivars 
from different regions; address seed contamination 
challenges. 

Rathnayake et al. Limited to six Japanese rice varieties; 
does not consider environmental factors. 

Expand dataset to include diverse rice varieties and 
study impact of environmental factors on age 
classification. 

Yasam et al. Limited to three crop types; does not 
address seed contamination or 
overlapping issues. 

Expand study to include more crop types; enhance 
model to handle contamination and overlapping 
seeds. 

The work by Loddo et al. [14] focuses on two specific datasets, which may limit the generalization of their proposed 
model to other seed types or datasets. Additionally, the number of classes and samples in their datasets is relatively 
small, potentially affecting the model's performance on larger and more diverse datasets. Furthermore, the evaluation 
metrics used primarily focus on classification accuracy, neglecting other important aspects such as computational 
efficiency and real-time performance. Gulzar et al.'s study [11] is limited to a dataset consisting of only 14 types of seeds, 
which may not be representative of the vast diversity of seeds encountered in practical applications. Additionally, the 
dataset's size, with around 2,000 images per class, is relatively small for deep learning models, potentially leading to 
overfitting or suboptimal performance. Furthermore, the authors do not provide a comprehensive comparison with 
other state-of-the-art models or alternative approaches. 

The work by Kiratiratanapruk et al. [13] is focused solely on Thai rice cultivars, which may limit its applicability to other 
regions or crops. Additionally, the authors do not provide a detailed analysis of the model's performance on individual 
cultivars or specific scenarios, such as varying lighting conditions or seed densities. Furthermore, the study does not 
explore the potential impact of data augmentation techniques or transfer learning approaches, which could potentially 
improve the model's performance. Fu et al.'s study [10] is limited to 16 oat cultivars, which may not be representative 
of the diversity of oat cultivars globally. The authors do not explore the potential impact of environmental or processing 
factors on seed morphology and spectral characteristics, which could affect the model's performance in real-world 
scenarios. Additionally, the study does not provide a comprehensive comparison with other machine learning or deep 
learning approaches for seed classification and identification. 

Ouf's work [19] focuses on object detection for leguminous seeds, which may not be directly applicable to other types 
of seeds or agricultural products. The dataset used is relatively small, with only 828 images containing 9,801 seed 
objects, potentially limiting the model's generalization capabilities. Furthermore, the study does not explore the 
potential impact of environmental factors, such as lighting conditions or seed maturity, on the model's performance, 
nor does it provide a detailed analysis of the model's computational efficiency or resource requirements. He et al. [12] 
primarily focuses on the classification of rice seed varieties using a multi-modal approach. However, the study is limited 
in its scope as it only considers eight rice varieties from China. The performance of the proposed method may vary when 
applied to a larger and more diverse set of rice varieties from different regions. Additionally, the study does not address 
the potential impact of environmental factors or storage conditions on the seed features, which could influence the 
classification accuracy. 

Xu et al. [16] proposes a machine vision and deep learning approach for the classification of maize seeds. While the 
study demonstrates promising results, it is limited to five maize varieties commonly found in China. The generalization 
capabilities of the proposed method may be restricted when applied to a broader range of maize varieties from different 
geographical regions or with varying morphological characteristics. Furthermore, the study does not consider the 
potential influence of seed age or storage conditions on the classification performance. Zhao et al.'s work [18] focuses 
on developing a deep learning model (YOLO-r) for detecting rice seed germination and evaluating the germination rate. 
However, the study is limited to a specific dataset consisting of rice seeds from Shanghai, China. The performance of the 
proposed model may vary when applied to rice seeds from different regions or cultivars, as seed morphology and 
germination patterns can be influenced by environmental and genetic factors. Additionally, the study does not address 
the potential challenges posed by factors such as seed contamination or the presence of debris in the images. 

Rathnayake et al. [15] proposes a machine learning model for the age classification of Japanese rice seeds. While the 
study introduces a novel dataset based on harvested age, it is limited to six rice varieties commonly found in Japan. The 
performance of the proposed model may be affected when applied to a broader range of rice varieties or seeds from 
different geographical regions. Furthermore, the study does not consider the potential impact of storage conditions or 
environmental factors on the seed features and age classification accuracy. 

https://paperpile.com/c/nlPvvo/fM7H
https://paperpile.com/c/nlPvvo/57Aa
https://paperpile.com/c/nlPvvo/3fdc
https://paperpile.com/c/nlPvvo/UcbP
https://paperpile.com/c/nlPvvo/zxLG
https://paperpile.com/c/nlPvvo/S3av
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https://paperpile.com/c/nlPvvo/XLIS
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The limitations and recommended solutions for various seed studies are summarized in Table 4. This table provides an 
overview of the specific challenges faced in each cited study and proposes potential approaches to enhance the 
generalizability and effectiveness of seed classification and identification models. 

8. Discussion and Recommendation 

This comprehensive review has examined ten experimental research works on seed detection and classification using 
artificial intelligence techniques, particularly machine learning and deep learning algorithms. The survey has 
highlighted the significant potential of AI in advancing seed identification and categorization processes, which play a 
crucial role in the agriculture domain. 

 

Figure 2 Recommendations for future work 

Based on the in-depth analysis of these studies, the following four recommendations (see fig. 2) are proposed for future 
experimental analyses of seed detection and classification: 

 Collecting Own Data: It is recommended that researchers consider collecting their own seed datasets tailored 
to their specific research objectives and target seed varieties. Many of the reviewed studies were limited by the 
use of existing datasets, which may not fully represent the diversity of seed types or environmental conditions 
encountered in real-world scenarios. By collecting their own data, researchers can ensure that their datasets 
capture the unique characteristics and variations of the seeds under investigation, leading to more accurate 
and generalizable models. 

 Collecting Sufficient and Big Data: Several studies in this review were constrained by the limited size of their 
datasets, which can adversely impact the performance of deep learning models and their ability to generalize 
effectively. Future research should prioritize the collection of large and diverse datasets, encompassing a wide 
range of seed varieties, imaging modalities, and environmental conditions. Larger datasets can leverage the full 
potential of deep learning algorithms and enable the development of more robust and accurate models for seed 
classification and identification. 

 Using Segmentation Techniques: Many of the reviewed studies employed image segmentation techniques to 
isolate individual seeds from the background or to separate overlapping seeds. Accurate segmentation is crucial 
for effective feature extraction and classification. Future research should explore advanced segmentation 
techniques, such as normalized canonical discriminant analysis (nCDA), clustering algorithms (e.g., DBSCAN), 
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or deep learning-based segmentation models, to improve the quality of input data and enhance the overall 
performance of seed classification models. 

 Creating a New Architecture: Several studies in this review demonstrated the advantages of developing custom 
deep learning architectures tailored specifically for seed classification tasks. These architectures, such as 
SeedNet, P-ResNet, and YOLO-r, outperformed generic models by capitalizing on the unique characteristics of 
seed imagery. Future research should consider designing and implementing novel deep learning architectures 
that can effectively capture the intricate morphological and spectral features of seeds, leading to improved 
classification accuracy and efficiency. 

By following these recommendations, researchers can address the limitations identified in the reviewed studies and 
contribute to the advancement of AI-driven seed detection and classification techniques. Collecting high-quality and 
diverse datasets, employing effective segmentation methods, and developing specialized deep learning architectures 
will enable the creation of more accurate, robust, and reliable models, ultimately benefiting the agriculture sector 
through improved seed quality control, inventory management, and crop productivity. 

9. Conclusion 

This study reviewed various AI-driven methods for seed detection and classification, highlighting significant 
advancements achieved through deep learning techniques. The survey revealed that Convolutional Neural Networks 
(CNNs) are predominantly employed due to their high accuracy and efficiency in processing seed images. Key 
limitations in existing studies were identified, including limited dataset diversity and generalization challenges, along 
with recommendations for future research. The research underscores AI's potential to enhance agricultural practices 
by enabling more accurate and efficient seed identification processes, ultimately contributing to improved crop quality 
and yield. Moving forward, insights from this study will guide the development of more robust AI models for widespread 
application in agriculture, benefiting society through sustainable food production advancements. 
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