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Abstract 

Infection with hepatitis virus, especially hepatitis B virus causes an irritation to the liver. Ranked among the top ten 
diseases with high mortality rate, viral hepatitis poses a great health challenges worldwide, with threat to chronic 
infection, hepatitis-related liver cancer and cirrhosis. Hence, a mathematical model to study the dynamics of hepatitis B 
virus infection from progressing into primary liver cancer was developed for analysis. We aimed at obtaining the 
optimal control strategies needed to reduce the number of new cases of this disease, and also reducing the deterioration 
rate of people living with this disease from sliding into primary liver cancer. We introduced four distinct control 
variables at each point in the model, and assumed that all the controls are set of Lebesque Measurable functions. The 
Pontryagin’s maximum principle (PMP) is employed to establish the optimal effect of these controls on the disease 
under study. Existence of model solution was established using the appropriate theorem. The model with control 
strategies was analytically solved using PMP and numerically simulated for each compartments, to establish the effect 
of the control variables on the dynamics of transmission of this infection within the compartment, and their overall 
effect on the entire population. Differential transform method (DTM) was later adopted as a semi-analytic scheme to 
solve the developed model. The series solution of DTM was numerically plotted for each compartment and compared 
with Runge-Kutta order 4 (RK4) numerical scheme. Analysis of the model with control pinpoint the importance of 
sensitization and vaccination on the overall dynamics of the infection, while the numerical plot of DTM and RK4 
established the efficacy of the adopted semi-analytic method (DTM) to accurately solve the system of equations of the 
model.  

Keywords:  0ptimal control; Lebesque; PMP; DTM; RK4 

1. Introduction

Hepatitis, an inflammation of the liver caused by several infectious viruses and noninfectious agents can lead to wide 
range of health problems, some of which can be fatal. Inflammation is coined from Latin word “inflammatio” which 
translates to “part of the biological response of body tissues to harmful stimuli, such as pathogens, damaged cells, or 
irritants” (Wikipedia). According to studies, there exist five strains of hepatitis, labelled A, B, C, D and E with each 
differing in the mode of transmissions, severity, and geographical location but all resulted in liver disease. Incidentally, 
B and C are the most common, most chronic and most fatal of all the strains, with both of them contributing to more 
than 60% of all cases worldwide. According to World Health Organization (WHO), hundreds of million individuals 
worldwide currently live with hepatitis B or C, and needless to say that majority among these people do not have access 
to effective testing and treatment (WHO, 2024). Hepatitis B can both be chronic or acute, and it is caused by the hepatitis 
B virus. Transmission dynamics of HBV includes perinatal, blood and bodily fluid contact, no clinical symptoms will be 
manifested in newly infected and people with acute stage characterized by dark urine, vomiting etc. This disease have 
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high mortality rate at chronic stage with over a million death (largely due to cirrhosis and primary liver cancer; also 
known as hepatocellular carcinoma) recorded in year 2022 alone, and it can be prevented with vaccine that is both safe, 
effective and available (WHO, 2024). 

Mathematical modeling of an infectious disease helps mathematician to study and analyzed the pattern of an emerging 
infection, understand the dynamics of such disease and predict the best approach of eradicating its menace. It is the 
transformation of an infection-epidemiology into mathematical expression so that analysis can be done for accurate 
assertion on method of solution. Several mathematical models on HBV exist in literature, with each model being specific 
about its aim. Xu et al.,(2023) analyzed a model to study the effects of vaccination strategies in China against Hepatitis 
B virus infections. Their analysis showed that to achieve a good result against HBV, a more robust mechanism of 
prevention and control is required to increase the vaccination of different age groups, and there is the need to sensitize 
the public to take adequate preventive measures against been infected. Wodajo et al., (2023) also presented a model on 
the effectiveness of intervention strategies against the spread of HBV by considering the role of vaccinations in their 
study. They performed the sensitivity analysis of their model parameters against the basic reproduction number, and 
their study revealed that screening, sensitization and vaccination are important approaches to reduce the pandemicity 
of HBV. Liang et al., (2018) presented a review of several mathematical models on immunization strategies against HBV 
transmission. They analyzed the parameters involved in various mathematical models from the year 1994 – 2015, and 
they concluded that the more closely the parameters considered in the model reflects the dynamics of the disease, the 
better the usefulness of the result of the model. Malede et al., (2023) discussed the optimal control and cost effectiveness 
analysis of HB disease, by considering a model with two dosages of vaccine. They obtained the two equilibrium positions 
for their model and also performed sensitivity analysis of the model parameters with respect to the effective 
reproduction number. The result obtained from their analyses indicated that control strategies against the spread of 
the disease is cost effective than treatment.  

2. Material and methods 

Having considered several models and their analysis, we present a mathematical model of staged progression of HB 
disease to primary liver cancer (PLC) by stratifying total human population, N, into six epidemiological classes denoted 
as M-Partially immune from/after birth, S-Susceptible, E-Exposed, I1-HB acute stage, I2-PLC stage and R-removed 
compartment respectively (M-S-E-I1 -I2 –R). B denotes the birth rate into M-class with immunity obtained from birth 
through vaccination or other means, δ denotes immunity loss and μ denotes natural mortality rate, which occurs at 
constant rate for the whole compartments. Other recruitments are taking as immigrants, with total immigrants denoted 
by π.  Recruitment into S-class is at 𝑘 and into I1-class at 𝑥 such that 𝑥 + 𝑘 = 1. 𝛽 denotes the incidence rate of new 
infection, which occurs when the susceptible come in contact with the infectious through any mode of transmissions. 
Due to incubation period of the disease, freshly infected individual stays in E-class until they begins to show clinical 
symptoms and then transferred to I1-class at the rate 𝜖. Untested, undetected and untreated individual in I1 moved to 
I2-class at the rate 𝜗, and disease induced death occurred in both 𝐼1, 𝐼2 classes at the rate 𝜔1, 𝜔2 respectively. Detected 
𝐼1, 𝐼2 are removed at the rate 𝜎1, 𝜎2 respectively. 

2.1. Model Assumptions 

Some of the basic assumptions of the model includes: 

• Total recruitment is divided into two, birth within the population and recruitment through immigration, thus 

immigrants are either assumed susceptible of infectious. 

• Compartment (I2) does not contribute to HB epidemic because we assumed it is a result of chronic Hepatitis B 

left untreated. 

• It was assumed mathematically that all model parameters are non-negative 
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Figure 1 Model flow diagram 

The model equations 

𝑑𝑀

𝑑𝑡
= 𝐵 − (𝜇 + 𝛿)𝑀 

𝑑𝑆

𝑑𝑡
= 𝑘𝜋 + 𝛿𝑀 − 𝛽𝑆𝐼1 − 𝜇𝑆 

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼1 − (𝜇 + 𝜖)𝐸  ……………. (1) 

𝑑𝐼1

𝑑𝑡
= 𝑥𝜋𝐼1 + 𝜖𝐸 − (𝜗 + 𝜇 + 𝜔1 + 𝜎1)𝐼1 

𝑑𝐼2

𝑑𝑡
= 𝜗𝐼1 − (𝜇 + 𝜔2 + 𝜎2)𝐼2 

𝑑𝑅

𝑑𝑡
= 𝜎1𝐼1 + 𝜎2𝐼2 − 𝜇𝑅 

2.2. Qualitative Analysis of the biological model 

First, we established the existence and uniqueness of solution to the above biological model using the Lipschitz criteria 
as adopted by several researchers by finding the partial derivatives of each equation in the system of equations 

governing the model with respect to each state variable. Suppose 𝑓1 =
𝑑𝑀

𝑑𝑡
, 𝑓2 =

𝑑𝑆

𝑑𝑡
, 𝑓3 =

𝑑𝐸

𝑑𝑡
, 𝑒𝑡𝑐. in equation (1), then 

|
𝜕𝑓1

𝑑𝑀
| = |−(𝜇 + 𝛿)| < ∞, |

𝜕𝑓1

𝑑𝑆
| = |

𝜕𝑓1

𝑑𝐸
| = |

𝜕𝑓1

𝑑𝐼1
| = |

𝜕𝑓1

𝑑𝐼2
| = |

𝜕𝑓1

𝑑𝑅
| = 0 < ∞; |

𝜕𝑓2

𝑑𝑀
| = 𝛿, |

𝜕𝑓2

𝑑𝑆
| = |−𝛽𝐼1 − 𝜇| < ∞, |

𝜕𝑓2

𝑑𝐼1
| = |−𝛽𝑆| <

∞, |
𝜕𝑓2

𝑑𝐸
| = |

𝜕𝑓2

𝑑𝐼2
| = |

𝜕𝑓2

𝑑𝑅
| = 0 < ∞; 𝑒𝑡𝑐.   

Since the partial derivative of each functions exist with respect to the state variables, and are both continuous and 
bounded, then the system of equations in (1) have a unique solution. Further analysis of the qualitative properties are 
done in Odetunde and Ibrahim (2016). The basic reproduction number of the model as obtained by Odetunde and 
Ibrahim (2016) is given as: 
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𝑅0 =
𝜖𝛽𝑆0

(𝜇 + 𝜖)(𝜗 + 𝜇 + 𝜔1 + 𝜎1 − 𝑥𝜋)
       … … … . (2) 

2.3. Optimal Control Analysis of the Model 

The control 𝑢1(𝑡) where 0 ≤ 𝑢1 ≪ 1 deals with partial immunity obtained at birth by an infant as a result of vaccination 
of its pregnant mother or during immunization at birth. If this immunity can be permanent, it implies that such 
categories of infant will never be infectious in their lifetime. For this to occur, the vaccine dosage and its content must 
be analyzed and improved to give optimum protection that can guarantee permanent immunity. 

The control 𝑢2(𝑡), 0 ≤ 𝑢2 ≤ 1,  models the effort needed in reducing the number of infective/exposed by proper 
sensitization of sexually active populations against sleeping with an HBV infected patients. The third control  𝑢3(𝑡), for 
0 ≤ 𝑢3 ≪ 1 deals with the percentage of susceptible individuals vaccinated per unit of time. The last control  𝑢4(𝑡) 
for 0 ≤ 𝑢4 ≪ 1, measured the effect of HBV therapeutic treatment measure on the reduction rate of HBV patients being 
transmitted to Primary Liver Cancer patients. 

The objective is to minimize the number of HBV infected cases  in a population with large susceptible to infected ratio 
and also to minimize the deterioration rate of HBV to Primary Liver Cancer among the infected population while 
maintaining the cost associated to control u1, u2, u3 and u4. 

Our state system is the following system of differential equations that model the dynamics of the HBV transmission rate 
to Primary Liver Cancer and the control parameters. 

𝑑𝑀

𝑑𝑡
= (1 − 𝑢1)𝐵 − (𝜇 + 𝛿)𝑀 

𝑑𝑆

𝑑𝑡
= 𝑘𝜋 + 𝛿𝑀 − (1 − 𝑢2)𝛽𝑆𝐼1 − 𝜇𝑆 + 𝑢3𝑆 

𝑑𝐸

𝑑𝑡
= (1 − 𝑢2)𝛽𝑆𝐼1 − (𝜇 + 𝜖)𝐸 ……….. (3) 

𝑑𝐼1

𝑑𝑡
= 𝑥𝜋𝐼1 + 𝜖𝐸 − (𝜗 + 𝜇 + 𝜔1 + 𝜎1)𝐼1 + 𝑢4𝐼1 

𝑑𝐼2

𝑑𝑡
= 𝜗𝐼1 − (𝜇 + 𝜔2 + 𝜎2)𝐼2 

𝑑𝑅

𝑑𝑡
= 𝜎1𝐼1 + 𝜎2𝐼2 − 𝜇𝑅 

With initial conditions  

M(0) = M0; S(0) = S0; E(0) = E0; I1(0) = I10; I2(0) = I20; R(0) = R0  ……... (4) 

The proposed cost functional is expressed as: 

𝐽(𝑢1, 𝑢2, 𝑢3, 𝑢4) = ∫ {𝑀(𝑡) + 𝑆(𝑡) + 𝐼1(𝑡) +
𝑘1

2
𝑢1

2 +
𝑘2

2
𝑢2

2 +
𝑘3

2
𝑢3

2 +
𝑘4

2
𝑢4

2} 𝑑𝑡
𝑡𝑓

𝑡0
    ………. (5) 

Where 𝑘1, 𝑘2, 𝑘3 and 𝑘4 are the weighting constants for the mass vaccination of pregnant mothers, mass sensitization of 
sexually active population against HBV transmission, mass vaccination of susceptible class and mass treatment of HBV 
infected class respectively. 

The objective of the proposed optimal control problem is to maximize the target population of immune individual 
against HBV at a given final time 𝑡𝑓 while minimizing the cost associated with effective vaccination, sensitization and 

therapeutic treatment available. Hence, we assume a cost associated with effective vaccination, sensitization program 
and therapeutic treatment to be quadratic functions. 
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We take into account the objective functional (5) derived to model (2). Pontryagins’ Maximum Principle (PMP) will be 
employed to determine the optimal control 𝑢1, 𝑢2, 𝑢3 and 𝑢4 with associated conditions as given in (4). The PMP changes 
(5), (3) and (4) into a problem of minimizing pointwise a Hamiltonian H, with respect to  (𝑢1, 𝑢2, 𝑢3, 𝑢4) simply as: 

𝐻(𝑀, 𝑆, 𝐸, 𝐼1, 𝐼2, 𝑅, 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6) = 𝑀(𝑡) + 𝑆(𝑡) + 𝐼1(𝑡) +
𝑘1

2
𝑢1

2 +
𝑘2

2
𝑢2

2 +
𝑘3

2
𝑢3

2 +
𝑘4

2
𝑢4

2 + 𝜆1
𝑑𝑀

𝑑𝑡
+

𝜆2
𝑑𝑆

𝑑𝑡
+ 𝜆3

𝑑𝐸

𝑑𝑡
+ 𝜆4

𝑑𝐼1

𝑑𝑡
+ 𝜆5

𝑑𝐼2

𝑑𝑡
+ 𝜆6

𝑑𝑅

𝑑𝑡
  ……….. (6) 

Where the set of controls 

𝑈 = {𝑢: [𝑡0, 𝑡𝑓] → [0,1]| 𝑢 𝑖𝑠 𝐿𝑒𝑏𝑒𝑠𝑞𝑢𝑒 𝑀𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒}  

Re-writing (6) by making use of (3), we have: 

𝐻 = 𝑀 + 𝑆 + 𝐼1 +
𝑘1

2
𝑢1

2 +
𝑘2

2
𝑢2

2 +
𝑘3

2
𝑢3

2 +
𝑘4

2
𝑢4

2 + 𝜆1[(1 − 𝑢1)𝐵 − (𝜇 + 𝛿)𝑀 ] + 𝜆2[𝑘𝜋 + 𝛿𝑀 − (1 − 𝑢2)𝛽𝑆𝐼1 − 𝜇𝑆 +

𝑢3𝑆] + 𝜆3[(1 − 𝑢2)𝛽𝑆𝐼1 − (𝜇 + 𝜖)𝐸] + 𝜆4[𝑥𝜋𝐼1 + 𝜖𝐸 − (𝜗 + 𝜇 + 𝜔1 + 𝜎1)𝐼1 + 𝑢4𝐼1] + 𝜆5[𝜗𝐼1 − (𝜇 + 𝜔2 + 𝜎2)𝐼2] +
𝜆6[𝜎1𝐼1 + 𝜎2𝐼2 − 𝜇𝑅]     ………… (7) 

Having formed the Hamiltonian, we want to test for the optimal control (𝑢1
∗, 𝑢2

∗ , 𝑢3
∗ , 𝑢4

∗) that minimizes 𝐽(𝑢1, 𝑢2, 𝑢3, 𝑢4) 
over the invariant region which can be obtained from: 

Optimality condition: 
𝜕𝐻

𝜕𝑢𝑖
= 0, for i = 1,2,3,4 

Adjoint functions 
𝑑𝜆𝑖

𝑑𝑡
= −

𝜕𝐻

𝜕𝑥𝑖
 , i = 1,2, ... ,6 

And 𝑥𝑖  represent equations corresponding to the state variables. 

To characterize the optimal control using PMP, we obtained the adjoint equations using 
𝑑𝜆𝑖

𝑑𝑡
= −

𝜕𝐻

𝜕𝑥𝑖
 

Hence, 

𝑑𝜆1

𝑑𝑡
= −

𝜕𝐻

𝜕𝑀
= −[1 + 𝜆1(−(𝜇 + 𝛿)) + 𝛿𝜆2]   ………. (8) 

𝑑𝜆2

𝑑𝑡
= −

𝜕𝐻

𝜕𝑆
= −[1 + 𝜆2((1 − 𝑢2)𝛽𝐼1 − 𝜇 + 𝑢3) + 𝜆3(1 − 𝑢2)𝛽𝐼1] ……. (9) 

𝑑𝜆3

𝑑𝑡
= −

𝜕𝐻

𝜕𝐸
= −[𝜆3[−(𝜇 + 𝜖)] + 𝜆4𝜖]  ……….. (10) 

𝑑𝜆4

𝑑𝑡
= −

𝜕𝐻

𝜕𝐼1
= −[1 + 𝜆2[−(1 − 𝑢2)𝛽𝑆] + 𝜆3(1 − 𝑢2)𝛽𝑆 + 𝜆4[𝑥𝜋 − (𝜗 + 𝜇 + 𝜔1 + 𝜎1) + 𝑢4] + 𝜆5𝜗 + 𝜆6𝜎1]…… (11) 

𝑑𝜆5

𝑑𝑡
= −

𝜕𝐻

𝜕𝐼2
= −[𝜆5[−(𝜇 + 𝜔2 + 𝜎2)] + 𝜆6𝜎2]  …….. (12) 

𝑑𝜆6

𝑑𝑡
= −

𝜕𝐻

𝜕𝑅
= 𝜆6𝜇   ……… (13) 

From (13):    

𝑑𝜆6

𝑑𝑡
= 𝜆6𝜇 

∫
𝑑𝜆6

𝜆6

= ∫ 𝜇𝑑𝑡 

𝜆6(𝑡) = 𝑐6𝑒𝜇𝑡  …………. (14) 
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From (12): 

𝑑𝜆5

𝑑𝑡
= 𝜆5(𝜇 + 𝜔2 + 𝜎2) − 𝜆6𝜎2 

𝑑𝜆5

𝑑𝑡
− 𝜆5(𝜇 + 𝜔2 + 𝜎2) = −𝜎2𝑐6𝑒𝜇𝑡 

Integrating factor for the above expression is given as:  𝑒−(𝜇+𝜔2+𝜎2)𝑡  

Hence, 

𝜆5(𝑡) = 𝑒(𝜇+𝜔2+𝜎2)𝑡 {∫ −𝜎2𝑐6 𝑒−(𝜔2+𝜎2)𝑡𝑑𝑡 + 𝑐5} 

With transversality conditions: 𝜆𝑖(𝑡𝑓) = 0,     𝑖 = 1, … , 6 

Next, the characterization of the optimal control is computed on the set {t:  0 <u*(t) < 1}, as: 

𝜕𝐻

𝜕𝑢1

= 𝑘1𝑢1 − 𝜆1𝐵 = 0, 𝑎𝑡 𝑢1
∗(𝑡) 

⟹   𝑢1
∗(𝑡) =  

𝜆1𝐵

𝑘1

 

When 
𝜕𝐻

𝜕𝑢1
< 0 𝑎𝑡 𝑡, then 𝑢1

∗(𝑡) = 0, and  

𝜆1𝐵

𝑘1

< 0 

When 
𝜕𝐻

𝜕𝑢1
> 0 𝑎𝑡 𝑡, then 𝑢1

∗(𝑡) = 1, and  

𝜆1𝐵

𝑘1

> 1 

So, the characterization of the optimal control 𝑢1
∗(𝑡) is thus given as: 

𝑢1
∗(𝑡) = 𝑚𝑖𝑛 {1, 𝑚𝑎𝑥 {

𝜆1𝐵

𝑘1

, 0}} 

Similarly for control 𝑢2 

𝜕𝐻

𝜕𝑢2
= 𝑘2𝑢2 − 𝜆2𝛽𝑆𝐼1 − 𝜆3𝛽𝑆𝐼1 = 0, at  𝑢2

∗(𝑡) 

𝑢2
∗(𝑡) =

(𝜆2 + 𝜆3)

𝑘2

𝛽𝑆𝐼1 

So, the characterization of the optimal control 𝑢2
∗(𝑡) is thus given as: 

𝑢2
∗(𝑡) = 𝑚𝑖𝑛 {1, 𝑚𝑎𝑥 {

(𝜆2 + 𝜆3)

𝑘2

𝛽𝑆𝐼1, 0}} 

Also, for control 𝑢3 
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𝜕𝐻

𝜕𝑢3
= 𝑘3𝑢3 − 𝜆2𝑆 = 0, at  𝑢3

∗(𝑡) 

𝑢3
∗(𝑡) =

𝜆2𝑆

𝑘3

 

So, the characterization of the optimal control 𝑢3
∗(𝑡) is thus given as: 

𝑢3
∗(𝑡) = 𝑚𝑖𝑛 {1, 𝑚𝑎𝑥 {

𝜆2𝑆

𝑘3

, 0}} 

Lastly, for control 𝑢4 

𝜕𝐻

𝜕𝑢4
= 𝑘4𝑢4 − 𝜆4𝐼1 = 0 at  𝑢4

∗(𝑡) 

𝑢4
∗(𝑡) =

𝜆4𝐼1

𝑘4

 

So, the characterization of the optimal control 𝑢4
∗(𝑡) is thus given as: 

𝑢4
∗ (𝑡) = 𝑚𝑖𝑛 {1, 𝑚𝑎𝑥 {

𝜆4𝐼1

𝑘4

, 0}} 

2.4. Numerical Simulation of the control Model 

In this section, we present the numerical simulation of the optimal control analysis of the model using Adams-Bashford 
predictor-corrector approach. 

 

Figure 2 Plot of M-class for both controlled and uncontrolled Models 

The graph in figure 2 established no deviation in both models, with or without control, the change in the M-class remain 
unaffected. This implies that the control introduced to this compartment has little to no overall effect on population 
changes of this group of people. The simplest explanation for this scenario is that, there is absolutely no vaccine that can 
efficiently protect the immune system of an individual from variants of organisms causing the illness.   
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Figure 3 Plot of S-class for both controlled and uncontrolled Models 

In figure 4, the population change for S-class is presented with and without the control. Two controls were introduced 
into this compartment in a bid to educate the populace about HBV and to establish the importance of sensitization and 
vaccination in reducing the spread. In the absence of these controls, the population of the susceptible reduces faster 
than when the controls were implemented. This ascertained that, depending on the success rate of our controls, the 
population of the susceptible individual can be maintained steadily over a longer period of time. Without the control, all 
susceptible individuals will have a contact with the disease within their lifespan, because the numerical value of the 
repoduction number in equation (2) is greater than unity. 

 

Figure 4 Plot of M-class for both controlled and uncontrolled Models 

There is rapid depletion in population of exposed compartment with control implemented as depicted in figure 4. This 
is due to the fact that there is a reduce rate of contact with the disease as a result of the controls implemented in the S-
class. Without the control, exposed population was emptied into the infectious class at a steady rate. In figures 5 and 6, 
the dynamics of population change for both 𝐼1, 𝐼2 classes are displayed respectively for both the controlled model and 
the model without control. It is evident from figure 5 that without the introduction of effective treatment strategy (𝑢4) 
for HBV, the deterioration rate of HBV patient to liver cirrhosis (primary liver cancer) is at a higher rate. With the 
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control, the population of the HBV class decreases minimally. This implies that at 𝑢4 ≤ 0.5 (the value used to plot the 
graph), the effect of the control strategy introduced does not guaranteed total recovery of infected. Hence, improving 
the quality of the therapeutic treatment for HBV can have significant positive influence on the overall standard of living 
of the infectious, thereby reducing the number of PLC that may arise from them. In figure 6, there is little differences in 
the two graphs for both the model with control and without control. This can be traced to the fact that liver damage can 
hardly be undone, although further can be minimized with effective strategies. Figure 7 is that of the recovered class 
with and without control. Since no control was implemented on that particular group of people, the slight differences 
between both graphs is traceable to earlier control on the 𝐼1 −class.  

 

Figure 5 Plot of HBV-class for both controlled and uncontrolled Models 

 

Figure 6 Plot of PLC-class for both controlled and uncontrolled Models 
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Figure 7 Plot of R-class for both controlled and uncontrolled Models 

2.5. Semi-Analytic Solution of the Model 

Due to nonlinear nature of some of the equations governing the model, a semi-analytic method of solution was applied, 
in order to get a series solution. Among the well-established semi-analytic method with great accuracy at solving 
nonlinear differential equations is differential transform method. This method has been adopted by various researcher, 
such as Akinboro et al., (2014), Odetunde et al., (2021), Olajide (2020) and Odetunde (2021) among others. This method 
involves transforming the system of equation (1) into a series form, by using DTM operational properties. These 
properties are well-defined and clearly stated in tabular form in Akinboro et al., (2014) and Odetunde et al., (2021). 
Adopting these properties on system in equation (1), the DTM equivalent of the model equations is given as: 

𝑀(𝑗 + 1) =
1

𝑗 + 1
[𝐵 − (𝜇 + 𝛿)𝑀(𝑗)] 

𝑆(𝑗 + 1) =
1

𝑗 + 1
[𝑘𝜋 + 𝛿𝑀(𝑗) − 𝛽 ∑ 𝑆(𝑙)𝐼1(𝑗 − 𝑙)

𝑗

𝑙

− 𝜇𝑆(𝑗)] 

𝐸(𝑗 + 1) =
1

𝑗+1
[𝛽 ∑ 𝑆(𝑙)𝐼1(𝑗 − 𝑙)𝑗

𝑙 − (𝜇 + 𝜖)𝐸(𝑗)]  ………… (15) 

𝐼1(𝑗 + 1) =
1

𝑗 + 1
[𝑥𝜋𝐼1(𝑗) + 𝜖𝐸(𝑗) − (𝜗 + 𝜇 + 𝜔1 + 𝜎1)𝐼1(𝑗)] 

𝐼2(𝑗 + 1) =
1

𝑗 + 1
[𝜗𝐼1(𝑗) − (𝜇 + 𝜔2 + 𝜎2)𝐼2(𝑗)] 

𝑅(𝑗 + 1) =
1

𝑗 + 1
[𝜎1𝐼1(𝑗) + 𝜎2𝐼2(𝑗) − 𝜇𝑅(𝑗)] 

Using parameter values in Table 1 together with an assumed initial values of M(0) := 46; S(0) := 140; E(0) := 55; 𝐼1(0) := 
30; 𝐼2(0) := 13; R(0) := 29, the following series solution of (15) was obtained 

𝑀(𝑡): =  46 − 13.6 ∗ 𝑡 + 2.040000000 𝑡2 − 0.2040000000 𝑡3 + 𝑂(𝑡 ≥ 4) 

𝑆(𝑡): =  140 − 34.432930 ∗ 𝑡 + 4.438803475 𝑡2 − 0.3832439580 𝑡3 + 𝑂(𝑡 ≥ 4) 

𝐸(𝑡) ∶=  55 − 14.4000 ∗ 𝑡 + 1.844489525 𝑡2 − 0.1651252261 𝑡3 + 𝑂(𝑡 ≥ 4) ……….. (16) 
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𝐼1(𝑡) ∶=  30 − 1.636100 ∗ 𝑡 − .5254104465 ∗ 𝑡2 + .1031427785 ∗ 𝑡3 + 𝑂(𝑡 ≥ 4) 

𝐼2(𝑡) = 13 − 8.663 ∗ 𝑡 + 3.024110750 𝑡2 − 0.7092609310 𝑡3 + 𝑂(𝑡 ≥ 4) 

𝑅𝑡 ∶=  29 − 4.287 ∗ 𝑡 + 0.3834660000 𝑡2 − 0.03331320386 𝑡3 + 𝑂(𝑡 ≥ 4) 

The graphical plot of (16) is given as: 

 

Figure 8 DTM plot of 𝑴(𝒕) 

 

Figure 9 DTM plot of 𝑺(𝒕) 
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Figure 10 DTM plot of 𝑬(𝒕) 

 

 

Figure 11 DTM plot of 𝑰𝟏(𝒕) 

 



World Journal of Advanced Research and Reviews, 2024, 24(02), 2048–2065 

2060 

 

Figure 12 DTM plot of 𝑰𝟐(𝒕) 

 

Figure 13 DTM plot of R(𝒕) 

2.6. Numerical Comparison of DTM with Runge-Kutta 4 

To establish the accuracy of DTM and its convergence interval, we plot the DTM solution and RK4 of the model for 
comparison. The numerical solution of RK4 was not explicitly presented but was graphically displayed.  
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Figure 14 Comparison Plot for 𝑴(𝒕) 

 

 

Figure 15 Comparison Plot for 𝑺(𝒕) 
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Figure 16 Comparison Plot for 𝑬(𝒕) 

 

Figure 17 Comparison Plot for 𝑰𝟏(𝒕) 
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Figure 18 Comparison Plot for 𝑰𝟐(𝒕) 

 

 

Figure 19 Comparison Plot for 𝑹(𝒕) 

3. Results and discussion 

A model to study the progression rate of hepatitis B virus infection (HBV) to Liver Cirrhosis (otherwise known as 
Primary Liver Cancer, PLC) was developed for analysis. In a bid to distort the deterioration rate of HBV to PLC, a 
controlled model was formulated by incoporating four distinct controls at various compartments of the model. The 
controlled model was analyzed based on PMP and numerically simulated to obtain figures (2) – (7). The interpretation 
of the plot was deductively give. We applied DTM to the developed model toobtain a semi-analytic solution. The series 
solution of DTM was presented in equation (16) and numerically displayed in figures (8) – (13). Furthermore, the DTM 
solution was numerically compared with RK4 and graphically displayed in figures (14) – (19). The comparison between 
the two schemes established the effectiveness of DTM to solve system of nonlinear and linear equations, as both graphs 
shows excellent agreement in terms of solution to the given problem. Analysis of the cntrolled model pinpoint the 
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importance of sensitization and vaccination (𝑢2, 𝑢3) over the other two controls as both have tangible positive effect on 
the overall new cases of HBV and progression to PLC.  

4. Conclusion 

A controlled model is essential to determine the best approach to eliminate a menace or to show the best option to 
reduce it. In this work, a mathematical model to understand the progression rate of HBV to PLC was developed for 
analysis. Some fundamental qualitative analysis of the model was established, before the introduction of some controls 
aimed at preventing the spread of both HBV and PLC. Semi-analytic solution of the model was established by using DTM. 
The numerical analysis of DTM and RK4 established an excellent agreement of DTM in solving system of differential 
equaions; be it nonlinear or linear.  
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